This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalized Euclidean real spaces are subcomplex pre-Hilbert spaces. (Contributed by Thierry Arnoux, 23-Jun-2019) (Proof shortened by AV, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | ||
| Assertion | rrxcph | ⊢ ( 𝐼 ∈ 𝑉 → 𝐻 ∈ ℂPreHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| 2 | rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 3 | 1 | rrxval | ⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 4 | eqid | ⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 5 | eqid | ⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 6 | eqid | ⊢ ( Scalar ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Scalar ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 7 | eqid | ⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) | |
| 8 | rebase | ⊢ ℝ = ( Base ‘ ℝfld ) | |
| 9 | remulr | ⊢ · = ( .r ‘ ℝfld ) | |
| 10 | eqid | ⊢ ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 11 | eqid | ⊢ ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 12 | re0g | ⊢ 0 = ( 0g ‘ ℝfld ) | |
| 13 | refldcj | ⊢ ∗ = ( *𝑟 ‘ ℝfld ) | |
| 14 | refld | ⊢ ℝfld ∈ Field | |
| 15 | 14 | a1i | ⊢ ( 𝐼 ∈ 𝑉 → ℝfld ∈ Field ) |
| 16 | fconstmpt | ⊢ ( 𝐼 × { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) | |
| 17 | 7 8 5 | frlmbasf | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 𝑓 : 𝐼 ⟶ ℝ ) |
| 18 | 17 | ffnd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 𝑓 Fn 𝐼 ) |
| 19 | 18 | 3adant3 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → 𝑓 Fn 𝐼 ) |
| 20 | simpl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 𝐼 ∈ 𝑉 ) | |
| 21 | 14 | a1i | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ℝfld ∈ Field ) |
| 22 | simpr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) | |
| 23 | 7 8 9 5 10 | frlmipval | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ ℝfld ∈ Field ) ∧ ( 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) → ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = ( ℝfld Σg ( 𝑓 ∘f · 𝑓 ) ) ) |
| 24 | 20 21 22 22 23 | syl22anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = ( ℝfld Σg ( 𝑓 ∘f · 𝑓 ) ) ) |
| 25 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 26 | eqidd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 27 | 18 18 20 20 25 26 26 | offval | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 ∘f · 𝑓 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 28 | 17 | ffvelcdmda | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 29 | 28 28 | remulcld | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) |
| 30 | 27 29 | fmpt3d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 ∘f · 𝑓 ) : 𝐼 ⟶ ℝ ) |
| 31 | ovexd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 ∘f · 𝑓 ) ∈ V ) | |
| 32 | 30 | ffund | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → Fun ( 𝑓 ∘f · 𝑓 ) ) |
| 33 | 7 12 5 | frlmbasfsupp | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 𝑓 finSupp 0 ) |
| 34 | 0red | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 0 ∈ ℝ ) | |
| 35 | simpr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 36 | 35 | recnd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 37 | 36 | mul02d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 0 · 𝑥 ) = 0 ) |
| 38 | 20 34 17 17 37 | suppofss1d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ⊆ ( 𝑓 supp 0 ) ) |
| 39 | fsuppsssupp | ⊢ ( ( ( ( 𝑓 ∘f · 𝑓 ) ∈ V ∧ Fun ( 𝑓 ∘f · 𝑓 ) ) ∧ ( 𝑓 finSupp 0 ∧ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ⊆ ( 𝑓 supp 0 ) ) ) → ( 𝑓 ∘f · 𝑓 ) finSupp 0 ) | |
| 40 | 31 32 33 38 39 | syl22anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 ∘f · 𝑓 ) finSupp 0 ) |
| 41 | regsumsupp | ⊢ ( ( ( 𝑓 ∘f · 𝑓 ) : 𝐼 ⟶ ℝ ∧ ( 𝑓 ∘f · 𝑓 ) finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( ℝfld Σg ( 𝑓 ∘f · 𝑓 ) ) = Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) ) | |
| 42 | 30 40 20 41 | syl3anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( ℝfld Σg ( 𝑓 ∘f · 𝑓 ) ) = Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) ) |
| 43 | suppssdm | ⊢ ( 𝑓 supp 0 ) ⊆ dom 𝑓 | |
| 44 | 43 17 | fssdm | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 supp 0 ) ⊆ 𝐼 ) |
| 45 | 38 44 | sstrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ⊆ 𝐼 ) |
| 46 | 45 | sselda | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → 𝑥 ∈ 𝐼 ) |
| 47 | 18 18 20 20 25 26 26 | ofval | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
| 48 | 46 47 | syldan | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
| 49 | 48 | sumeq2dv | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
| 50 | 42 49 | eqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( ℝfld Σg ( 𝑓 ∘f · 𝑓 ) ) = Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
| 51 | 24 50 | eqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
| 52 | 51 | 3adant3 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
| 53 | simp3 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) | |
| 54 | 52 53 | eqtr3d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ) |
| 55 | 33 | fsuppimpd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 supp 0 ) ∈ Fin ) |
| 56 | 55 38 | ssfid | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∈ Fin ) |
| 57 | 46 29 | syldan | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) |
| 58 | 28 | msqge0d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 0 ≤ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
| 59 | 46 58 | syldan | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → 0 ≤ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
| 60 | 56 57 59 | fsum00 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ↔ ∀ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ) ) |
| 61 | 60 | 3adant3 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ( Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ↔ ∀ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ) ) |
| 62 | 54 61 | mpbid | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ∀ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ) |
| 63 | 62 | r19.21bi | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ) |
| 64 | 63 | adantlr | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ) |
| 65 | 28 | 3adantl3 | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 66 | 65 | recnd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) |
| 67 | 66 66 | mul0ord | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ↔ ( ( 𝑓 ‘ 𝑥 ) = 0 ∨ ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
| 68 | 67 | adantr | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → ( ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ↔ ( ( 𝑓 ‘ 𝑥 ) = 0 ∨ ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
| 69 | 64 68 | mpbid | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → ( ( 𝑓 ‘ 𝑥 ) = 0 ∨ ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
| 70 | oridm | ⊢ ( ( ( 𝑓 ‘ 𝑥 ) = 0 ∨ ( 𝑓 ‘ 𝑥 ) = 0 ) ↔ ( 𝑓 ‘ 𝑥 ) = 0 ) | |
| 71 | 69 70 | sylib | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
| 72 | 30 | 3adant3 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ( 𝑓 ∘f · 𝑓 ) : 𝐼 ⟶ ℝ ) |
| 73 | 72 | adantr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ∘f · 𝑓 ) : 𝐼 ⟶ ℝ ) |
| 74 | ssidd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ⊆ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) | |
| 75 | simpl1 | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑉 ) | |
| 76 | 0red | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 0 ∈ ℝ ) | |
| 77 | 73 74 75 76 | suppssr | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) → ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = 0 ) |
| 78 | 47 | 3adantl3 | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
| 79 | 78 | eqeq1d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = 0 ↔ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ) ) |
| 80 | 79 67 | bitrd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = 0 ↔ ( ( 𝑓 ‘ 𝑥 ) = 0 ∨ ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
| 81 | 80 70 | bitrdi | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = 0 ↔ ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
| 82 | 81 | biimpa | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = 0 ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
| 83 | 77 82 | syldan | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
| 84 | undif | ⊢ ( ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ⊆ 𝐼 ↔ ( ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∪ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) = 𝐼 ) | |
| 85 | 45 84 | sylib | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∪ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) = 𝐼 ) |
| 86 | 85 | eleq2d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑥 ∈ ( ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∪ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) ↔ 𝑥 ∈ 𝐼 ) ) |
| 87 | 86 | 3adant3 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ( 𝑥 ∈ ( ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∪ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) ↔ 𝑥 ∈ 𝐼 ) ) |
| 88 | 87 | biimpar | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ ( ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∪ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) ) |
| 89 | elun | ⊢ ( 𝑥 ∈ ( ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∪ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) ↔ ( 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∨ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) ) | |
| 90 | 88 89 | sylib | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∨ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) ) |
| 91 | 71 83 90 | mpjaodan | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
| 92 | 91 | ralrimiva | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) = 0 ) |
| 93 | fconstfv | ⊢ ( 𝑓 : 𝐼 ⟶ { 0 } ↔ ( 𝑓 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) = 0 ) ) | |
| 94 | c0ex | ⊢ 0 ∈ V | |
| 95 | 94 | fconst2 | ⊢ ( 𝑓 : 𝐼 ⟶ { 0 } ↔ 𝑓 = ( 𝐼 × { 0 } ) ) |
| 96 | 93 95 | sylbb1 | ⊢ ( ( 𝑓 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) = 0 ) → 𝑓 = ( 𝐼 × { 0 } ) ) |
| 97 | 19 92 96 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → 𝑓 = ( 𝐼 × { 0 } ) ) |
| 98 | isfld | ⊢ ( ℝfld ∈ Field ↔ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) ) | |
| 99 | 14 98 | mpbi | ⊢ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) |
| 100 | 99 | simpli | ⊢ ℝfld ∈ DivRing |
| 101 | drngring | ⊢ ( ℝfld ∈ DivRing → ℝfld ∈ Ring ) | |
| 102 | 100 101 | ax-mp | ⊢ ℝfld ∈ Ring |
| 103 | 7 12 | frlm0 | ⊢ ( ( ℝfld ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 0 } ) = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 104 | 102 103 | mpan | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { 0 } ) = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 105 | 104 16 | eqtr3di | ⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
| 106 | 105 | 3ad2ant1 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
| 107 | 16 97 106 | 3eqtr4a | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → 𝑓 = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 108 | cjre | ⊢ ( 𝑥 ∈ ℝ → ( ∗ ‘ 𝑥 ) = 𝑥 ) | |
| 109 | 108 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ℝ ) → ( ∗ ‘ 𝑥 ) = 𝑥 ) |
| 110 | id | ⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉 ) | |
| 111 | 7 8 9 5 10 11 12 13 15 107 109 110 | frlmphl | ⊢ ( 𝐼 ∈ 𝑉 → ( ℝfld freeLMod 𝐼 ) ∈ PreHil ) |
| 112 | 7 | frlmsca | ⊢ ( ( ℝfld ∈ Field ∧ 𝐼 ∈ 𝑉 ) → ℝfld = ( Scalar ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 113 | 14 112 | mpan | ⊢ ( 𝐼 ∈ 𝑉 → ℝfld = ( Scalar ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 114 | df-refld | ⊢ ℝfld = ( ℂfld ↾s ℝ ) | |
| 115 | 113 114 | eqtr3di | ⊢ ( 𝐼 ∈ 𝑉 → ( Scalar ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ℂfld ↾s ℝ ) ) |
| 116 | simpr1 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓 ) ) → 𝑓 ∈ ℝ ) | |
| 117 | simpr3 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓 ) ) → 0 ≤ 𝑓 ) | |
| 118 | 116 117 | resqrtcld | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓 ) ) → ( √ ‘ 𝑓 ) ∈ ℝ ) |
| 119 | 56 57 59 | fsumge0 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 0 ≤ Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
| 120 | 119 50 | breqtrrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 0 ≤ ( ℝfld Σg ( 𝑓 ∘f · 𝑓 ) ) ) |
| 121 | 120 24 | breqtrrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 0 ≤ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) ) |
| 122 | 4 5 6 111 115 10 118 121 | tcphcph | ⊢ ( 𝐼 ∈ 𝑉 → ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ∈ ℂPreHil ) |
| 123 | 3 122 | eqeltrd | ⊢ ( 𝐼 ∈ 𝑉 → 𝐻 ∈ ℂPreHil ) |