This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for the support of a function operation to be a subset of the support of the left function term. (Contributed by Thierry Arnoux, 21-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppofssd.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| suppofssd.2 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| suppofssd.3 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| suppofssd.4 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) | ||
| suppofss1d.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑍 𝑋 𝑥 ) = 𝑍 ) | ||
| Assertion | suppofss1d | ⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑋 𝐺 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppofssd.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | suppofssd.2 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 3 | suppofssd.3 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 4 | suppofssd.4 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) | |
| 5 | suppofss1d.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑍 𝑋 𝑥 ) = 𝑍 ) | |
| 6 | 3 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 7 | 4 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 8 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 9 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 10 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 11 | 6 7 1 1 8 9 10 | ofval | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) 𝑋 ( 𝐺 ‘ 𝑦 ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑍 ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) 𝑋 ( 𝐺 ‘ 𝑦 ) ) ) |
| 13 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑍 ) → ( 𝐹 ‘ 𝑦 ) = 𝑍 ) | |
| 14 | 13 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑍 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑋 ( 𝐺 ‘ 𝑦 ) ) = ( 𝑍 𝑋 ( 𝐺 ‘ 𝑦 ) ) ) |
| 15 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝑍 𝑋 𝑥 ) = 𝑍 ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐵 ( 𝑍 𝑋 𝑥 ) = 𝑍 ) |
| 17 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) |
| 18 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 = ( 𝐺 ‘ 𝑦 ) ) → 𝑥 = ( 𝐺 ‘ 𝑦 ) ) | |
| 19 | 18 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 = ( 𝐺 ‘ 𝑦 ) ) → ( 𝑍 𝑋 𝑥 ) = ( 𝑍 𝑋 ( 𝐺 ‘ 𝑦 ) ) ) |
| 20 | 19 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 = ( 𝐺 ‘ 𝑦 ) ) → ( ( 𝑍 𝑋 𝑥 ) = 𝑍 ↔ ( 𝑍 𝑋 ( 𝐺 ‘ 𝑦 ) ) = 𝑍 ) ) |
| 21 | 17 20 | rspcdv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑍 𝑋 𝑥 ) = 𝑍 → ( 𝑍 𝑋 ( 𝐺 ‘ 𝑦 ) ) = 𝑍 ) ) |
| 22 | 16 21 | mpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑍 𝑋 ( 𝐺 ‘ 𝑦 ) ) = 𝑍 ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑍 ) → ( 𝑍 𝑋 ( 𝐺 ‘ 𝑦 ) ) = 𝑍 ) |
| 24 | 12 14 23 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑍 ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑦 ) = 𝑍 ) |
| 25 | 24 | ex | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑦 ) = 𝑍 → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑦 ) = 𝑍 ) ) |
| 26 | 25 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = 𝑍 → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑦 ) = 𝑍 ) ) |
| 27 | 6 7 1 1 8 | offn | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑋 𝐺 ) Fn 𝐴 ) |
| 28 | ssidd | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐴 ) | |
| 29 | suppfnss | ⊢ ( ( ( ( 𝐹 ∘f 𝑋 𝐺 ) Fn 𝐴 ∧ 𝐹 Fn 𝐴 ) ∧ ( 𝐴 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = 𝑍 → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑦 ) = 𝑍 ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) | |
| 30 | 27 6 28 1 2 29 | syl23anc | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = 𝑍 → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑦 ) = 𝑍 ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) |
| 31 | 26 30 | mpd | ⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑋 𝐺 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) |