This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019) (Proof shortened by AV, 19-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | regsumsupp | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( ℝfld Σg 𝐹 ) = Σ 𝑥 ∈ ( 𝐹 supp 0 ) ( 𝐹 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 2 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 3 | cnring | ⊢ ℂfld ∈ Ring | |
| 4 | ringcmn | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) | |
| 5 | 3 4 | mp1i | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ℂfld ∈ CMnd ) |
| 6 | simp3 | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ 𝑉 ) | |
| 7 | simp1 | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → 𝐹 : 𝐼 ⟶ ℝ ) | |
| 8 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 9 | fss | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝐼 ⟶ ℂ ) | |
| 10 | 7 8 9 | sylancl | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → 𝐹 : 𝐼 ⟶ ℂ ) |
| 11 | ssidd | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) | |
| 12 | simp2 | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → 𝐹 finSupp 0 ) | |
| 13 | 1 2 5 6 10 11 12 | gsumres | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( ℂfld Σg ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) = ( ℂfld Σg 𝐹 ) ) |
| 14 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 15 | df-refld | ⊢ ℝfld = ( ℂfld ↾s ℝ ) | |
| 16 | 8 | a1i | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ℝ ⊆ ℂ ) |
| 17 | 0red | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → 0 ∈ ℝ ) | |
| 18 | simpr | ⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) | |
| 19 | 18 | addlidd | ⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ℂ ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 20 | 18 | addridd | ⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ℂ ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 21 | 19 20 | jca | ⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ℂ ) → ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) |
| 22 | 1 14 15 5 6 16 7 17 21 | gsumress | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( ℂfld Σg 𝐹 ) = ( ℝfld Σg 𝐹 ) ) |
| 23 | 13 22 | eqtr2d | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( ℝfld Σg 𝐹 ) = ( ℂfld Σg ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) ) |
| 24 | suppssdm | ⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 | |
| 25 | 24 7 | fssdm | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( 𝐹 supp 0 ) ⊆ 𝐼 ) |
| 26 | 7 25 | feqresmpt | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝑥 ∈ ( 𝐹 supp 0 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 27 | 26 | oveq2d | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( ℂfld Σg ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) = ( ℂfld Σg ( 𝑥 ∈ ( 𝐹 supp 0 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 28 | 12 | fsuppimpd | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( 𝐹 supp 0 ) ∈ Fin ) |
| 29 | simpl1 | ⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 𝐹 : 𝐼 ⟶ ℝ ) | |
| 30 | 25 | sselda | ⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 𝑥 ∈ 𝐼 ) |
| 31 | 29 30 | ffvelcdmd | ⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 32 | 8 31 | sselid | ⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 33 | 28 32 | gsumfsum | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( ℂfld Σg ( 𝑥 ∈ ( 𝐹 supp 0 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) = Σ 𝑥 ∈ ( 𝐹 supp 0 ) ( 𝐹 ‘ 𝑥 ) ) |
| 34 | 23 27 33 | 3eqtrd | ⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( ℝfld Σg 𝐹 ) = Σ 𝑥 ∈ ( 𝐹 supp 0 ) ( 𝐹 ‘ 𝑥 ) ) |