This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance over generalized Euclidean spaces. Compare with df-rrn . (Contributed by Thierry Arnoux, 20-Jun-2019) (Proof shortened by AV, 20-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | ||
| Assertion | rrxds | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) = ( dist ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| 2 | rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 3 | 1 | rrxval | ⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( dist ‘ 𝐻 ) = ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 5 | resrng | ⊢ ℝfld ∈ *-Ring | |
| 6 | srngring | ⊢ ( ℝfld ∈ *-Ring → ℝfld ∈ Ring ) | |
| 7 | 5 6 | ax-mp | ⊢ ℝfld ∈ Ring |
| 8 | eqid | ⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) | |
| 9 | 8 | frlmlmod | ⊢ ( ( ℝfld ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( ℝfld freeLMod 𝐼 ) ∈ LMod ) |
| 10 | 7 9 | mpan | ⊢ ( 𝐼 ∈ 𝑉 → ( ℝfld freeLMod 𝐼 ) ∈ LMod ) |
| 11 | lmodgrp | ⊢ ( ( ℝfld freeLMod 𝐼 ) ∈ LMod → ( ℝfld freeLMod 𝐼 ) ∈ Grp ) | |
| 12 | eqid | ⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 13 | eqid | ⊢ ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) | |
| 14 | eqid | ⊢ ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 15 | 12 13 14 | tcphds | ⊢ ( ( ℝfld freeLMod 𝐼 ) ∈ Grp → ( ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∘ ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 16 | 10 11 15 | 3syl | ⊢ ( 𝐼 ∈ 𝑉 → ( ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∘ ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 17 | eqid | ⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 18 | 17 14 | grpsubf | ⊢ ( ( ℝfld freeLMod 𝐼 ) ∈ Grp → ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) : ( ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) × ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ⟶ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 19 | 10 11 18 | 3syl | ⊢ ( 𝐼 ∈ 𝑉 → ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) : ( ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) × ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ⟶ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 20 | 1 2 | rrxbase | ⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 21 | rebase | ⊢ ℝ = ( Base ‘ ℝfld ) | |
| 22 | re0g | ⊢ 0 = ( 0g ‘ ℝfld ) | |
| 23 | eqid | ⊢ { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } | |
| 24 | 8 21 22 23 | frlmbas | ⊢ ( ( ℝfld ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 25 | 7 24 | mpan | ⊢ ( 𝐼 ∈ 𝑉 → { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 26 | 20 25 | eqtrd | ⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 27 | 26 | sqxpeqd | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) × ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 28 | 27 26 | feq23d | ⊢ ( 𝐼 ∈ 𝑉 → ( ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ↔ ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) : ( ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) × ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ⟶ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 29 | 19 28 | mpbird | ⊢ ( 𝐼 ∈ 𝑉 → ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 30 | 29 | fovcdmda | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ∈ 𝐵 ) |
| 31 | 29 | ffnd | ⊢ ( 𝐼 ∈ 𝑉 → ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) Fn ( 𝐵 × 𝐵 ) ) |
| 32 | fnov | ⊢ ( ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) Fn ( 𝐵 × 𝐵 ) ↔ ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ) ) | |
| 33 | 31 32 | sylib | ⊢ ( 𝐼 ∈ 𝑉 → ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ) ) |
| 34 | 1 2 | rrxnm | ⊢ ( 𝐼 ∈ 𝑉 → ( ℎ ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) ) = ( norm ‘ 𝐻 ) ) |
| 35 | 3 | fveq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( norm ‘ 𝐻 ) = ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 36 | 34 35 | eqtr2d | ⊢ ( 𝐼 ∈ 𝑉 → ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( ℎ ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) ) ) |
| 37 | fveq1 | ⊢ ( ℎ = ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) → ( ℎ ‘ 𝑥 ) = ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ) | |
| 38 | 37 | oveq1d | ⊢ ( ℎ = ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) → ( ( ℎ ‘ 𝑥 ) ↑ 2 ) = ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) |
| 39 | 38 | mpteq2dv | ⊢ ( ℎ = ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) ↑ 2 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) ) |
| 40 | 39 | oveq2d | ⊢ ( ℎ = ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) → ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) ↑ 2 ) ) ) = ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| 41 | 40 | fveq2d | ⊢ ( ℎ = ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) → ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) = ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) ) ) ) |
| 42 | 30 33 36 41 | fmpoco | ⊢ ( 𝐼 ∈ 𝑉 → ( ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∘ ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) ) ) ) ) |
| 43 | simp1 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝐼 ∈ 𝑉 ) | |
| 44 | simprl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ 𝐵 ) | |
| 45 | 26 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐵 = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 46 | 44 45 | eleqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 47 | 46 | 3impb | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 48 | 8 21 17 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) |
| 49 | 43 47 48 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) |
| 50 | elmapi | ⊢ ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) → 𝑓 : 𝐼 ⟶ ℝ ) | |
| 51 | 49 50 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑓 : 𝐼 ⟶ ℝ ) |
| 52 | 51 | ffnd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑓 Fn 𝐼 ) |
| 53 | simprr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ 𝐵 ) | |
| 54 | 53 45 | eleqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 55 | 54 | 3impb | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 56 | 8 21 17 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑔 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 𝑔 ∈ ( ℝ ↑m 𝐼 ) ) |
| 57 | 43 55 56 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ ( ℝ ↑m 𝐼 ) ) |
| 58 | elmapi | ⊢ ( 𝑔 ∈ ( ℝ ↑m 𝐼 ) → 𝑔 : 𝐼 ⟶ ℝ ) | |
| 59 | 57 58 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 : 𝐼 ⟶ ℝ ) |
| 60 | 59 | ffnd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 Fn 𝐼 ) |
| 61 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 62 | eqidd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 63 | eqidd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) | |
| 64 | 52 60 43 43 61 62 63 | offval | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑓 ∘f ( -g ‘ ℝfld ) 𝑔 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( -g ‘ ℝfld ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 65 | 7 | a1i | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ℝfld ∈ Ring ) |
| 66 | simpl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑉 ) | |
| 67 | eqid | ⊢ ( -g ‘ ℝfld ) = ( -g ‘ ℝfld ) | |
| 68 | 8 17 65 66 46 54 67 14 | frlmsubgval | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) = ( 𝑓 ∘f ( -g ‘ ℝfld ) 𝑔 ) ) |
| 69 | 68 | 3impb | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) = ( 𝑓 ∘f ( -g ‘ ℝfld ) 𝑔 ) ) |
| 70 | 51 | ffvelcdmda | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 71 | 59 | ffvelcdmda | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) |
| 72 | 67 | resubgval | ⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) → ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( -g ‘ ℝfld ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 73 | 70 71 72 | syl2anc | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( -g ‘ ℝfld ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 74 | 73 | mpteq2dva | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( -g ‘ ℝfld ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 75 | 64 69 74 | 3eqtr4d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 76 | 70 71 | resubcld | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
| 77 | 75 76 | fvmpt2d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ) |
| 78 | 77 | oveq1d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) = ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 79 | 78 | mpteq2dva | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) |
| 80 | 79 | oveq2d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) ) = ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) |
| 81 | 80 | fveq2d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) ) ) = ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) |
| 82 | 81 | mpoeq3dva | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) ) |
| 83 | 42 82 | eqtrd | ⊢ ( 𝐼 ∈ 𝑉 → ( ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∘ ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) ) |
| 84 | 4 16 83 | 3eqtr2rd | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) = ( dist ‘ 𝐻 ) ) |