This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumge0.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumge0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| fsumge0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | ||
| Assertion | fsum00 | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 = 0 ↔ ∀ 𝑘 ∈ 𝐴 𝐵 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumge0.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumge0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 3 | fsumge0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | |
| 4 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → 𝐴 ∈ Fin ) |
| 5 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 6 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
| 7 | snssi | ⊢ ( 𝑚 ∈ 𝐴 → { 𝑚 } ⊆ 𝐴 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → { 𝑚 } ⊆ 𝐴 ) |
| 9 | 4 5 6 8 | fsumless | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → Σ 𝑘 ∈ { 𝑚 } 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 10 | 9 | adantlr | ⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → Σ 𝑘 ∈ { 𝑚 } 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 11 | simpr | ⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ 𝐴 ) | |
| 12 | 2 3 | jca | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 13 | 12 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) → ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 15 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 | |
| 16 | 15 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ |
| 17 | nfcv | ⊢ Ⅎ 𝑘 0 | |
| 18 | nfcv | ⊢ Ⅎ 𝑘 ≤ | |
| 19 | 17 18 15 | nfbr | ⊢ Ⅎ 𝑘 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 |
| 20 | 16 19 | nfan | ⊢ Ⅎ 𝑘 ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ ∧ 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 21 | csbeq1a | ⊢ ( 𝑘 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) | |
| 22 | 21 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( 𝐵 ∈ ℝ ↔ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ ) ) |
| 23 | 21 | breq2d | ⊢ ( 𝑘 = 𝑚 → ( 0 ≤ 𝐵 ↔ 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 24 | 22 23 | anbi12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ↔ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ ∧ 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
| 25 | 20 24 | rspc | ⊢ ( 𝑚 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ ∧ 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
| 26 | 14 25 | mpan9 | ⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ ∧ 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 27 | 26 | simpld | ⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
| 28 | 27 | recnd | ⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 29 | sumsns | ⊢ ( ( 𝑚 ∈ 𝐴 ∧ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ { 𝑚 } 𝐵 = ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) | |
| 30 | 11 28 29 | syl2anc | ⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → Σ 𝑘 ∈ { 𝑚 } 𝐵 = ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 31 | simplr | ⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) | |
| 32 | 10 30 31 | 3brtr3d | ⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ≤ 0 ) |
| 33 | 26 | simprd | ⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 34 | 0re | ⊢ 0 ∈ ℝ | |
| 35 | letri3 | ⊢ ( ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = 0 ↔ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ≤ 0 ∧ 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) | |
| 36 | 27 34 35 | sylancl | ⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = 0 ↔ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ≤ 0 ∧ 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
| 37 | 32 33 36 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = 0 ) |
| 38 | 37 | ralrimiva | ⊢ ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) → ∀ 𝑚 ∈ 𝐴 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = 0 ) |
| 39 | nfv | ⊢ Ⅎ 𝑚 𝐵 = 0 | |
| 40 | 15 | nfeq1 | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = 0 |
| 41 | 21 | eqeq1d | ⊢ ( 𝑘 = 𝑚 → ( 𝐵 = 0 ↔ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = 0 ) ) |
| 42 | 39 40 41 | cbvralw | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 0 ↔ ∀ 𝑚 ∈ 𝐴 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = 0 ) |
| 43 | 38 42 | sylibr | ⊢ ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) → ∀ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 44 | 43 | ex | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 = 0 → ∀ 𝑘 ∈ 𝐴 𝐵 = 0 ) ) |
| 45 | sumz | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 0 ) ∨ 𝐴 ∈ Fin ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) | |
| 46 | 45 | olcs | ⊢ ( 𝐴 ∈ Fin → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 47 | sumeq2 | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 0 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝐴 0 ) | |
| 48 | 47 | eqeq1d | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 0 → ( Σ 𝑘 ∈ 𝐴 𝐵 = 0 ↔ Σ 𝑘 ∈ 𝐴 0 = 0 ) ) |
| 49 | 46 48 | syl5ibrcom | ⊢ ( 𝐴 ∈ Fin → ( ∀ 𝑘 ∈ 𝐴 𝐵 = 0 → Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ) |
| 50 | 1 49 | syl | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ 𝐴 𝐵 = 0 → Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ) |
| 51 | 44 50 | impbid | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 = 0 ↔ ∀ 𝑘 ∈ 𝐴 𝐵 = 0 ) ) |