This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero in a free module (ring constraint is stronger than necessary, but allows use of frlmlss ). (Contributed by Stefan O'Rear, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| frlm0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | frlm0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( 𝐼 × { 0 } ) = ( 0g ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlm0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
| 4 | eqid | ⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) | |
| 5 | 4 | pwslmod | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐼 ∈ 𝑊 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ∈ LMod ) |
| 6 | 3 5 | sylan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ∈ LMod ) |
| 7 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 8 | eqid | ⊢ ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) | |
| 9 | 1 7 8 | frlmlss | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ 𝐹 ) ∈ ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 10 | 8 | lsssubg | ⊢ ( ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ∈ LMod ∧ ( Base ‘ 𝐹 ) ∈ ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) → ( Base ‘ 𝐹 ) ∈ ( SubGrp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 11 | 6 9 10 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ 𝐹 ) ∈ ( SubGrp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 12 | eqid | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) | |
| 13 | eqid | ⊢ ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) | |
| 14 | 12 13 | subg0 | ⊢ ( ( Base ‘ 𝐹 ) ∈ ( SubGrp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) → ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( 0g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 15 | 11 14 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( 0g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 16 | lmodgrp | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ LMod → ( ringLMod ‘ 𝑅 ) ∈ Grp ) | |
| 17 | grpmnd | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ Grp → ( ringLMod ‘ 𝑅 ) ∈ Mnd ) | |
| 18 | 3 16 17 | 3syl | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ Mnd ) |
| 19 | rlm0 | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 20 | 2 19 | eqtri | ⊢ 0 = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) |
| 21 | 4 20 | pws0g | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → ( 𝐼 × { 0 } ) = ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 22 | 18 21 | sylan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( 𝐼 × { 0 } ) = ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 23 | 1 7 | frlmpws | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) |
| 24 | 23 | fveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 25 | 15 22 24 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( 𝐼 × { 0 } ) = ( 0g ‘ 𝐹 ) ) |