This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalized Euclidean real spaces are subcomplex pre-Hilbert spaces. (Contributed by Thierry Arnoux, 23-Jun-2019) (Proof shortened by AV, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | |- H = ( RR^ ` I ) |
|
| rrxbase.b | |- B = ( Base ` H ) |
||
| Assertion | rrxcph | |- ( I e. V -> H e. CPreHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | |- H = ( RR^ ` I ) |
|
| 2 | rrxbase.b | |- B = ( Base ` H ) |
|
| 3 | 1 | rrxval | |- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 4 | eqid | |- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
|
| 5 | eqid | |- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
|
| 6 | eqid | |- ( Scalar ` ( RRfld freeLMod I ) ) = ( Scalar ` ( RRfld freeLMod I ) ) |
|
| 7 | eqid | |- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
|
| 8 | rebase | |- RR = ( Base ` RRfld ) |
|
| 9 | remulr | |- x. = ( .r ` RRfld ) |
|
| 10 | eqid | |- ( .i ` ( RRfld freeLMod I ) ) = ( .i ` ( RRfld freeLMod I ) ) |
|
| 11 | eqid | |- ( 0g ` ( RRfld freeLMod I ) ) = ( 0g ` ( RRfld freeLMod I ) ) |
|
| 12 | re0g | |- 0 = ( 0g ` RRfld ) |
|
| 13 | refldcj | |- * = ( *r ` RRfld ) |
|
| 14 | refld | |- RRfld e. Field |
|
| 15 | 14 | a1i | |- ( I e. V -> RRfld e. Field ) |
| 16 | fconstmpt | |- ( I X. { 0 } ) = ( x e. I |-> 0 ) |
|
| 17 | 7 8 5 | frlmbasf | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> f : I --> RR ) |
| 18 | 17 | ffnd | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> f Fn I ) |
| 19 | 18 | 3adant3 | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> f Fn I ) |
| 20 | simpl | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> I e. V ) |
|
| 21 | 14 | a1i | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> RRfld e. Field ) |
| 22 | simpr | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> f e. ( Base ` ( RRfld freeLMod I ) ) ) |
|
| 23 | 7 8 9 5 10 | frlmipval | |- ( ( ( I e. V /\ RRfld e. Field ) /\ ( f e. ( Base ` ( RRfld freeLMod I ) ) /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = ( RRfld gsum ( f oF x. f ) ) ) |
| 24 | 20 21 22 22 23 | syl22anc | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = ( RRfld gsum ( f oF x. f ) ) ) |
| 25 | inidm | |- ( I i^i I ) = I |
|
| 26 | eqidd | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. I ) -> ( f ` x ) = ( f ` x ) ) |
|
| 27 | 18 18 20 20 25 26 26 | offval | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f oF x. f ) = ( x e. I |-> ( ( f ` x ) x. ( f ` x ) ) ) ) |
| 28 | 17 | ffvelcdmda | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. I ) -> ( f ` x ) e. RR ) |
| 29 | 28 28 | remulcld | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. I ) -> ( ( f ` x ) x. ( f ` x ) ) e. RR ) |
| 30 | 27 29 | fmpt3d | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f oF x. f ) : I --> RR ) |
| 31 | ovexd | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f oF x. f ) e. _V ) |
|
| 32 | 30 | ffund | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> Fun ( f oF x. f ) ) |
| 33 | 7 12 5 | frlmbasfsupp | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> f finSupp 0 ) |
| 34 | 0red | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> 0 e. RR ) |
|
| 35 | simpr | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. RR ) -> x e. RR ) |
|
| 36 | 35 | recnd | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. RR ) -> x e. CC ) |
| 37 | 36 | mul02d | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. RR ) -> ( 0 x. x ) = 0 ) |
| 38 | 20 34 17 17 37 | suppofss1d | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( ( f oF x. f ) supp 0 ) C_ ( f supp 0 ) ) |
| 39 | fsuppsssupp | |- ( ( ( ( f oF x. f ) e. _V /\ Fun ( f oF x. f ) ) /\ ( f finSupp 0 /\ ( ( f oF x. f ) supp 0 ) C_ ( f supp 0 ) ) ) -> ( f oF x. f ) finSupp 0 ) |
|
| 40 | 31 32 33 38 39 | syl22anc | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f oF x. f ) finSupp 0 ) |
| 41 | regsumsupp | |- ( ( ( f oF x. f ) : I --> RR /\ ( f oF x. f ) finSupp 0 /\ I e. V ) -> ( RRfld gsum ( f oF x. f ) ) = sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f oF x. f ) ` x ) ) |
|
| 42 | 30 40 20 41 | syl3anc | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( RRfld gsum ( f oF x. f ) ) = sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f oF x. f ) ` x ) ) |
| 43 | suppssdm | |- ( f supp 0 ) C_ dom f |
|
| 44 | 43 17 | fssdm | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f supp 0 ) C_ I ) |
| 45 | 38 44 | sstrd | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( ( f oF x. f ) supp 0 ) C_ I ) |
| 46 | 45 | sselda | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> x e. I ) |
| 47 | 18 18 20 20 25 26 26 | ofval | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. I ) -> ( ( f oF x. f ) ` x ) = ( ( f ` x ) x. ( f ` x ) ) ) |
| 48 | 46 47 | syldan | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> ( ( f oF x. f ) ` x ) = ( ( f ` x ) x. ( f ` x ) ) ) |
| 49 | 48 | sumeq2dv | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f oF x. f ) ` x ) = sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) ) |
| 50 | 42 49 | eqtrd | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( RRfld gsum ( f oF x. f ) ) = sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) ) |
| 51 | 24 50 | eqtrd | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) ) |
| 52 | 51 | 3adant3 | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) ) |
| 53 | simp3 | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) |
|
| 54 | 52 53 | eqtr3d | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) = 0 ) |
| 55 | 33 | fsuppimpd | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f supp 0 ) e. Fin ) |
| 56 | 55 38 | ssfid | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( ( f oF x. f ) supp 0 ) e. Fin ) |
| 57 | 46 29 | syldan | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> ( ( f ` x ) x. ( f ` x ) ) e. RR ) |
| 58 | 28 | msqge0d | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. I ) -> 0 <_ ( ( f ` x ) x. ( f ` x ) ) ) |
| 59 | 46 58 | syldan | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> 0 <_ ( ( f ` x ) x. ( f ` x ) ) ) |
| 60 | 56 57 59 | fsum00 | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) = 0 <-> A. x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) = 0 ) ) |
| 61 | 60 | 3adant3 | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> ( sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) = 0 <-> A. x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) = 0 ) ) |
| 62 | 54 61 | mpbid | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> A. x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) = 0 ) |
| 63 | 62 | r19.21bi | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> ( ( f ` x ) x. ( f ` x ) ) = 0 ) |
| 64 | 63 | adantlr | |- ( ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> ( ( f ` x ) x. ( f ` x ) ) = 0 ) |
| 65 | 28 | 3adantl3 | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( f ` x ) e. RR ) |
| 66 | 65 | recnd | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( f ` x ) e. CC ) |
| 67 | 66 66 | mul0ord | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( ( ( f ` x ) x. ( f ` x ) ) = 0 <-> ( ( f ` x ) = 0 \/ ( f ` x ) = 0 ) ) ) |
| 68 | 67 | adantr | |- ( ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> ( ( ( f ` x ) x. ( f ` x ) ) = 0 <-> ( ( f ` x ) = 0 \/ ( f ` x ) = 0 ) ) ) |
| 69 | 64 68 | mpbid | |- ( ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> ( ( f ` x ) = 0 \/ ( f ` x ) = 0 ) ) |
| 70 | oridm | |- ( ( ( f ` x ) = 0 \/ ( f ` x ) = 0 ) <-> ( f ` x ) = 0 ) |
|
| 71 | 69 70 | sylib | |- ( ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> ( f ` x ) = 0 ) |
| 72 | 30 | 3adant3 | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> ( f oF x. f ) : I --> RR ) |
| 73 | 72 | adantr | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( f oF x. f ) : I --> RR ) |
| 74 | ssidd | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( ( f oF x. f ) supp 0 ) C_ ( ( f oF x. f ) supp 0 ) ) |
|
| 75 | simpl1 | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> I e. V ) |
|
| 76 | 0red | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> 0 e. RR ) |
|
| 77 | 73 74 75 76 | suppssr | |- ( ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) /\ x e. ( I \ ( ( f oF x. f ) supp 0 ) ) ) -> ( ( f oF x. f ) ` x ) = 0 ) |
| 78 | 47 | 3adantl3 | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( ( f oF x. f ) ` x ) = ( ( f ` x ) x. ( f ` x ) ) ) |
| 79 | 78 | eqeq1d | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( ( ( f oF x. f ) ` x ) = 0 <-> ( ( f ` x ) x. ( f ` x ) ) = 0 ) ) |
| 80 | 79 67 | bitrd | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( ( ( f oF x. f ) ` x ) = 0 <-> ( ( f ` x ) = 0 \/ ( f ` x ) = 0 ) ) ) |
| 81 | 80 70 | bitrdi | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( ( ( f oF x. f ) ` x ) = 0 <-> ( f ` x ) = 0 ) ) |
| 82 | 81 | biimpa | |- ( ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) /\ ( ( f oF x. f ) ` x ) = 0 ) -> ( f ` x ) = 0 ) |
| 83 | 77 82 | syldan | |- ( ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) /\ x e. ( I \ ( ( f oF x. f ) supp 0 ) ) ) -> ( f ` x ) = 0 ) |
| 84 | undif | |- ( ( ( f oF x. f ) supp 0 ) C_ I <-> ( ( ( f oF x. f ) supp 0 ) u. ( I \ ( ( f oF x. f ) supp 0 ) ) ) = I ) |
|
| 85 | 45 84 | sylib | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( ( ( f oF x. f ) supp 0 ) u. ( I \ ( ( f oF x. f ) supp 0 ) ) ) = I ) |
| 86 | 85 | eleq2d | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( x e. ( ( ( f oF x. f ) supp 0 ) u. ( I \ ( ( f oF x. f ) supp 0 ) ) ) <-> x e. I ) ) |
| 87 | 86 | 3adant3 | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> ( x e. ( ( ( f oF x. f ) supp 0 ) u. ( I \ ( ( f oF x. f ) supp 0 ) ) ) <-> x e. I ) ) |
| 88 | 87 | biimpar | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> x e. ( ( ( f oF x. f ) supp 0 ) u. ( I \ ( ( f oF x. f ) supp 0 ) ) ) ) |
| 89 | elun | |- ( x e. ( ( ( f oF x. f ) supp 0 ) u. ( I \ ( ( f oF x. f ) supp 0 ) ) ) <-> ( x e. ( ( f oF x. f ) supp 0 ) \/ x e. ( I \ ( ( f oF x. f ) supp 0 ) ) ) ) |
|
| 90 | 88 89 | sylib | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( x e. ( ( f oF x. f ) supp 0 ) \/ x e. ( I \ ( ( f oF x. f ) supp 0 ) ) ) ) |
| 91 | 71 83 90 | mpjaodan | |- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( f ` x ) = 0 ) |
| 92 | 91 | ralrimiva | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> A. x e. I ( f ` x ) = 0 ) |
| 93 | fconstfv | |- ( f : I --> { 0 } <-> ( f Fn I /\ A. x e. I ( f ` x ) = 0 ) ) |
|
| 94 | c0ex | |- 0 e. _V |
|
| 95 | 94 | fconst2 | |- ( f : I --> { 0 } <-> f = ( I X. { 0 } ) ) |
| 96 | 93 95 | sylbb1 | |- ( ( f Fn I /\ A. x e. I ( f ` x ) = 0 ) -> f = ( I X. { 0 } ) ) |
| 97 | 19 92 96 | syl2anc | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> f = ( I X. { 0 } ) ) |
| 98 | isfld | |- ( RRfld e. Field <-> ( RRfld e. DivRing /\ RRfld e. CRing ) ) |
|
| 99 | 14 98 | mpbi | |- ( RRfld e. DivRing /\ RRfld e. CRing ) |
| 100 | 99 | simpli | |- RRfld e. DivRing |
| 101 | drngring | |- ( RRfld e. DivRing -> RRfld e. Ring ) |
|
| 102 | 100 101 | ax-mp | |- RRfld e. Ring |
| 103 | 7 12 | frlm0 | |- ( ( RRfld e. Ring /\ I e. V ) -> ( I X. { 0 } ) = ( 0g ` ( RRfld freeLMod I ) ) ) |
| 104 | 102 103 | mpan | |- ( I e. V -> ( I X. { 0 } ) = ( 0g ` ( RRfld freeLMod I ) ) ) |
| 105 | 104 16 | eqtr3di | |- ( I e. V -> ( 0g ` ( RRfld freeLMod I ) ) = ( x e. I |-> 0 ) ) |
| 106 | 105 | 3ad2ant1 | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> ( 0g ` ( RRfld freeLMod I ) ) = ( x e. I |-> 0 ) ) |
| 107 | 16 97 106 | 3eqtr4a | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> f = ( 0g ` ( RRfld freeLMod I ) ) ) |
| 108 | cjre | |- ( x e. RR -> ( * ` x ) = x ) |
|
| 109 | 108 | adantl | |- ( ( I e. V /\ x e. RR ) -> ( * ` x ) = x ) |
| 110 | id | |- ( I e. V -> I e. V ) |
|
| 111 | 7 8 9 5 10 11 12 13 15 107 109 110 | frlmphl | |- ( I e. V -> ( RRfld freeLMod I ) e. PreHil ) |
| 112 | 7 | frlmsca | |- ( ( RRfld e. Field /\ I e. V ) -> RRfld = ( Scalar ` ( RRfld freeLMod I ) ) ) |
| 113 | 14 112 | mpan | |- ( I e. V -> RRfld = ( Scalar ` ( RRfld freeLMod I ) ) ) |
| 114 | df-refld | |- RRfld = ( CCfld |`s RR ) |
|
| 115 | 113 114 | eqtr3di | |- ( I e. V -> ( Scalar ` ( RRfld freeLMod I ) ) = ( CCfld |`s RR ) ) |
| 116 | simpr1 | |- ( ( I e. V /\ ( f e. RR /\ f e. RR /\ 0 <_ f ) ) -> f e. RR ) |
|
| 117 | simpr3 | |- ( ( I e. V /\ ( f e. RR /\ f e. RR /\ 0 <_ f ) ) -> 0 <_ f ) |
|
| 118 | 116 117 | resqrtcld | |- ( ( I e. V /\ ( f e. RR /\ f e. RR /\ 0 <_ f ) ) -> ( sqrt ` f ) e. RR ) |
| 119 | 56 57 59 | fsumge0 | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> 0 <_ sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) ) |
| 120 | 119 50 | breqtrrd | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> 0 <_ ( RRfld gsum ( f oF x. f ) ) ) |
| 121 | 120 24 | breqtrrd | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> 0 <_ ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) |
| 122 | 4 5 6 111 115 10 118 121 | tcphcph | |- ( I e. V -> ( toCPreHil ` ( RRfld freeLMod I ) ) e. CPreHil ) |
| 123 | 3 122 | eqeltrd | |- ( I e. V -> H e. CPreHil ) |