This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| Assertion | rpnnen2lem12 | ⊢ 𝒫 ℕ ≼ ( 0 [,] 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| 2 | ovex | ⊢ ( 0 [,] 1 ) ∈ V | |
| 3 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 ℕ → 𝑦 ⊆ ℕ ) | |
| 4 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 5 | 4 | sumeq1i | ⊢ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) |
| 6 | 1nn | ⊢ 1 ∈ ℕ | |
| 7 | 1 | rpnnen2lem6 | ⊢ ( ( 𝑦 ⊆ ℕ ∧ 1 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ℝ ) |
| 8 | 6 7 | mpan2 | ⊢ ( 𝑦 ⊆ ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ℝ ) |
| 9 | 5 8 | eqeltrid | ⊢ ( 𝑦 ⊆ ℕ → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ℝ ) |
| 10 | 3 9 | syl | ⊢ ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ℝ ) |
| 11 | 1zzd | ⊢ ( 𝑦 ∈ 𝒫 ℕ → 1 ∈ ℤ ) | |
| 12 | eqidd | ⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ) | |
| 13 | 1 | rpnnen2lem2 | ⊢ ( 𝑦 ⊆ ℕ → ( 𝐹 ‘ 𝑦 ) : ℕ ⟶ ℝ ) |
| 14 | 3 13 | syl | ⊢ ( 𝑦 ∈ 𝒫 ℕ → ( 𝐹 ‘ 𝑦 ) : ℕ ⟶ ℝ ) |
| 15 | 14 | ffvelcdmda | ⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ℝ ) |
| 16 | 1 | rpnnen2lem5 | ⊢ ( ( 𝑦 ⊆ ℕ ∧ 1 ∈ ℕ ) → seq 1 ( + , ( 𝐹 ‘ 𝑦 ) ) ∈ dom ⇝ ) |
| 17 | 3 6 16 | sylancl | ⊢ ( 𝑦 ∈ 𝒫 ℕ → seq 1 ( + , ( 𝐹 ‘ 𝑦 ) ) ∈ dom ⇝ ) |
| 18 | ssid | ⊢ ℕ ⊆ ℕ | |
| 19 | 1 | rpnnen2lem4 | ⊢ ( ( 𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) ) |
| 20 | 18 19 | mp3an2 | ⊢ ( ( 𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) ) |
| 21 | 20 | simpld | ⊢ ( ( 𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ) |
| 22 | 3 21 | sylan | ⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ) |
| 23 | 4 11 12 15 17 22 | isumge0 | ⊢ ( 𝑦 ∈ 𝒫 ℕ → 0 ≤ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ) |
| 24 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 25 | 24 | a1i | ⊢ ( 𝑦 ∈ 𝒫 ℕ → ( 1 / 2 ) ∈ ℝ ) |
| 26 | 1re | ⊢ 1 ∈ ℝ | |
| 27 | 26 | a1i | ⊢ ( 𝑦 ∈ 𝒫 ℕ → 1 ∈ ℝ ) |
| 28 | 1 | rpnnen2lem7 | ⊢ ( ( 𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 1 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) |
| 29 | 18 6 28 | mp3an23 | ⊢ ( 𝑦 ⊆ ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) |
| 30 | 3 29 | syl | ⊢ ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) |
| 31 | eqid | ⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ 1 ) | |
| 32 | eqidd | ⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) = ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) | |
| 33 | elnnuz | ⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 34 | 1 | rpnnen2lem2 | ⊢ ( ℕ ⊆ ℕ → ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ ) |
| 35 | 18 34 | ax-mp | ⊢ ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ |
| 36 | 35 | ffvelcdmi | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ∈ ℝ ) |
| 37 | 36 | recnd | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ∈ ℂ ) |
| 38 | 33 37 | sylbir | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ∈ ℂ ) |
| 39 | 38 | adantl | ⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ∈ ℂ ) |
| 40 | 1 | rpnnen2lem3 | ⊢ seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( 1 / 2 ) |
| 41 | 40 | a1i | ⊢ ( 𝑦 ∈ 𝒫 ℕ → seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( 1 / 2 ) ) |
| 42 | 31 11 32 39 41 | isumclim | ⊢ ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) = ( 1 / 2 ) ) |
| 43 | 30 42 | breqtrd | ⊢ ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ ( 1 / 2 ) ) |
| 44 | 5 43 | eqbrtrid | ⊢ ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ ( 1 / 2 ) ) |
| 45 | halflt1 | ⊢ ( 1 / 2 ) < 1 | |
| 46 | 24 26 45 | ltleii | ⊢ ( 1 / 2 ) ≤ 1 |
| 47 | 46 | a1i | ⊢ ( 𝑦 ∈ 𝒫 ℕ → ( 1 / 2 ) ≤ 1 ) |
| 48 | 10 25 27 44 47 | letrd | ⊢ ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ 1 ) |
| 49 | elicc01 | ⊢ ( Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ( 0 [,] 1 ) ↔ ( Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ℝ ∧ 0 ≤ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ 1 ) ) | |
| 50 | 10 23 48 49 | syl3anbrc | ⊢ ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ( 0 [,] 1 ) ) |
| 51 | elpwi | ⊢ ( 𝑧 ∈ 𝒫 ℕ → 𝑧 ⊆ ℕ ) | |
| 52 | ssdifss | ⊢ ( 𝑦 ⊆ ℕ → ( 𝑦 ∖ 𝑧 ) ⊆ ℕ ) | |
| 53 | ssdifss | ⊢ ( 𝑧 ⊆ ℕ → ( 𝑧 ∖ 𝑦 ) ⊆ ℕ ) | |
| 54 | unss | ⊢ ( ( ( 𝑦 ∖ 𝑧 ) ⊆ ℕ ∧ ( 𝑧 ∖ 𝑦 ) ⊆ ℕ ) ↔ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ⊆ ℕ ) | |
| 55 | 54 | biimpi | ⊢ ( ( ( 𝑦 ∖ 𝑧 ) ⊆ ℕ ∧ ( 𝑧 ∖ 𝑦 ) ⊆ ℕ ) → ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ⊆ ℕ ) |
| 56 | 52 53 55 | syl2an | ⊢ ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) → ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ⊆ ℕ ) |
| 57 | 3 51 56 | syl2an | ⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ⊆ ℕ ) |
| 58 | eqss | ⊢ ( 𝑦 = 𝑧 ↔ ( 𝑦 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) | |
| 59 | ssdif0 | ⊢ ( 𝑦 ⊆ 𝑧 ↔ ( 𝑦 ∖ 𝑧 ) = ∅ ) | |
| 60 | ssdif0 | ⊢ ( 𝑧 ⊆ 𝑦 ↔ ( 𝑧 ∖ 𝑦 ) = ∅ ) | |
| 61 | 59 60 | anbi12i | ⊢ ( ( 𝑦 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ↔ ( ( 𝑦 ∖ 𝑧 ) = ∅ ∧ ( 𝑧 ∖ 𝑦 ) = ∅ ) ) |
| 62 | un00 | ⊢ ( ( ( 𝑦 ∖ 𝑧 ) = ∅ ∧ ( 𝑧 ∖ 𝑦 ) = ∅ ) ↔ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) = ∅ ) | |
| 63 | 58 61 62 | 3bitri | ⊢ ( 𝑦 = 𝑧 ↔ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) = ∅ ) |
| 64 | 63 | necon3bii | ⊢ ( 𝑦 ≠ 𝑧 ↔ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ≠ ∅ ) |
| 65 | 64 | biimpi | ⊢ ( 𝑦 ≠ 𝑧 → ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ≠ ∅ ) |
| 66 | nnwo | ⊢ ( ( ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ⊆ ℕ ∧ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ≠ ∅ ) → ∃ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 ) | |
| 67 | 57 65 66 | syl2an | ⊢ ( ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) ∧ 𝑦 ≠ 𝑧 ) → ∃ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 ) |
| 68 | 67 | ex | ⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( 𝑦 ≠ 𝑧 → ∃ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 ) ) |
| 69 | 57 | sselda | ⊢ ( ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) ∧ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ) → 𝑚 ∈ ℕ ) |
| 70 | df-ral | ⊢ ( ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 ↔ ∀ 𝑛 ( 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) → 𝑚 ≤ 𝑛 ) ) | |
| 71 | con34b | ⊢ ( ( 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) → 𝑚 ≤ 𝑛 ) ↔ ( ¬ 𝑚 ≤ 𝑛 → ¬ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ) ) | |
| 72 | eldif | ⊢ ( 𝑛 ∈ ( 𝑦 ∖ 𝑧 ) ↔ ( 𝑛 ∈ 𝑦 ∧ ¬ 𝑛 ∈ 𝑧 ) ) | |
| 73 | eldif | ⊢ ( 𝑛 ∈ ( 𝑧 ∖ 𝑦 ) ↔ ( 𝑛 ∈ 𝑧 ∧ ¬ 𝑛 ∈ 𝑦 ) ) | |
| 74 | 72 73 | orbi12i | ⊢ ( ( 𝑛 ∈ ( 𝑦 ∖ 𝑧 ) ∨ 𝑛 ∈ ( 𝑧 ∖ 𝑦 ) ) ↔ ( ( 𝑛 ∈ 𝑦 ∧ ¬ 𝑛 ∈ 𝑧 ) ∨ ( 𝑛 ∈ 𝑧 ∧ ¬ 𝑛 ∈ 𝑦 ) ) ) |
| 75 | elun | ⊢ ( 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ↔ ( 𝑛 ∈ ( 𝑦 ∖ 𝑧 ) ∨ 𝑛 ∈ ( 𝑧 ∖ 𝑦 ) ) ) | |
| 76 | xor | ⊢ ( ¬ ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ↔ ( ( 𝑛 ∈ 𝑦 ∧ ¬ 𝑛 ∈ 𝑧 ) ∨ ( 𝑛 ∈ 𝑧 ∧ ¬ 𝑛 ∈ 𝑦 ) ) ) | |
| 77 | 74 75 76 | 3bitr4ri | ⊢ ( ¬ ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ↔ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ) |
| 78 | 77 | con1bii | ⊢ ( ¬ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ↔ ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) |
| 79 | 78 | imbi2i | ⊢ ( ( ¬ 𝑚 ≤ 𝑛 → ¬ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ) ↔ ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) |
| 80 | 71 79 | bitri | ⊢ ( ( 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) → 𝑚 ≤ 𝑛 ) ↔ ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) |
| 81 | 80 | albii | ⊢ ( ∀ 𝑛 ( 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) → 𝑚 ≤ 𝑛 ) ↔ ∀ 𝑛 ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) |
| 82 | 70 81 | bitri | ⊢ ( ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 ↔ ∀ 𝑛 ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) |
| 83 | alral | ⊢ ( ∀ 𝑛 ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) → ∀ 𝑛 ∈ ℕ ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) | |
| 84 | nnre | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) | |
| 85 | nnre | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) | |
| 86 | ltnle | ⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑚 ∈ ℝ ) → ( 𝑛 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑛 ) ) | |
| 87 | 84 85 86 | syl2anr | ⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑛 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑛 ) ) |
| 88 | 87 | imbi1d | ⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ↔ ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) |
| 89 | 88 | ralbidva | ⊢ ( 𝑚 ∈ ℕ → ( ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ↔ ∀ 𝑛 ∈ ℕ ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) |
| 90 | 83 89 | imbitrrid | ⊢ ( 𝑚 ∈ ℕ → ( ∀ 𝑛 ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) |
| 91 | 82 90 | biimtrid | ⊢ ( 𝑚 ∈ ℕ → ( ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) |
| 92 | 69 91 | syl | ⊢ ( ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) ∧ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ) → ( ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) |
| 93 | 92 | reximdva | ⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( ∃ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 → ∃ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) |
| 94 | 68 93 | syld | ⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( 𝑦 ≠ 𝑧 → ∃ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) |
| 95 | rexun | ⊢ ( ∃ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ↔ ( ∃ 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ∨ ∃ 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) | |
| 96 | 94 95 | imbitrdi | ⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( 𝑦 ≠ 𝑧 → ( ∃ 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ∨ ∃ 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) ) |
| 97 | simpll | ⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → 𝑦 ⊆ ℕ ) | |
| 98 | simplr | ⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → 𝑧 ⊆ ℕ ) | |
| 99 | simprl | ⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ) | |
| 100 | simprr | ⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) | |
| 101 | biid | ⊢ ( Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ↔ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) | |
| 102 | 1 97 98 99 100 101 | rpnnen2lem11 | ⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 103 | 102 | rexlimdvaa | ⊢ ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) → ( ∃ 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
| 104 | simplr | ⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → 𝑧 ⊆ ℕ ) | |
| 105 | simpll | ⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → 𝑦 ⊆ ℕ ) | |
| 106 | simprl | ⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ) | |
| 107 | simprr | ⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) | |
| 108 | bicom | ⊢ ( ( 𝑛 ∈ 𝑧 ↔ 𝑛 ∈ 𝑦 ) ↔ ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) | |
| 109 | 108 | imbi2i | ⊢ ( ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑧 ↔ 𝑛 ∈ 𝑦 ) ) ↔ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) |
| 110 | 109 | ralbii | ⊢ ( ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑧 ↔ 𝑛 ∈ 𝑦 ) ) ↔ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) |
| 111 | 107 110 | sylibr | ⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑧 ↔ 𝑛 ∈ 𝑦 ) ) ) |
| 112 | eqcom | ⊢ ( Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ↔ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ) | |
| 113 | 1 104 105 106 111 112 | rpnnen2lem11 | ⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 114 | 113 | rexlimdvaa | ⊢ ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) → ( ∃ 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
| 115 | 103 114 | jaod | ⊢ ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) → ( ( ∃ 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ∨ ∃ 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
| 116 | 3 51 115 | syl2an | ⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( ( ∃ 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ∨ ∃ 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
| 117 | 96 116 | syld | ⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( 𝑦 ≠ 𝑧 → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
| 118 | 117 | necon4ad | ⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) → 𝑦 = 𝑧 ) ) |
| 119 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 120 | 119 | fveq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 121 | 120 | sumeq2sdv | ⊢ ( 𝑦 = 𝑧 → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 122 | 118 121 | impbid1 | ⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ↔ 𝑦 = 𝑧 ) ) |
| 123 | 50 122 | dom2 | ⊢ ( ( 0 [,] 1 ) ∈ V → 𝒫 ℕ ≼ ( 0 [,] 1 ) ) |
| 124 | 2 123 | ax-mp | ⊢ 𝒫 ℕ ≼ ( 0 [,] 1 ) |