This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| rpnnen2.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) | ||
| rpnnen2.3 | ⊢ ( 𝜑 → 𝐵 ⊆ ℕ ) | ||
| rpnnen2.4 | ⊢ ( 𝜑 → 𝑚 ∈ ( 𝐴 ∖ 𝐵 ) ) | ||
| rpnnen2.5 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵 ) ) ) | ||
| rpnnen2.6 | ⊢ ( 𝜓 ↔ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | ||
| Assertion | rpnnen2lem11 | ⊢ ( 𝜑 → ¬ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| 2 | rpnnen2.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) | |
| 3 | rpnnen2.3 | ⊢ ( 𝜑 → 𝐵 ⊆ ℕ ) | |
| 4 | rpnnen2.4 | ⊢ ( 𝜑 → 𝑚 ∈ ( 𝐴 ∖ 𝐵 ) ) | |
| 5 | rpnnen2.5 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵 ) ) ) | |
| 6 | rpnnen2.6 | ⊢ ( 𝜓 ↔ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | |
| 7 | eldifi | ⊢ ( 𝑚 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑚 ∈ 𝐴 ) | |
| 8 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ ℕ ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑚 ∈ ( 𝐴 ∖ 𝐵 ) ) → 𝑚 ∈ ℕ ) |
| 10 | 2 4 9 | syl2anc | ⊢ ( 𝜑 → 𝑚 ∈ ℕ ) |
| 11 | 1 | rpnnen2lem6 | ⊢ ( ( 𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
| 12 | 3 10 11 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
| 13 | 3nn | ⊢ 3 ∈ ℕ | |
| 14 | nnrecre | ⊢ ( 3 ∈ ℕ → ( 1 / 3 ) ∈ ℝ ) | |
| 15 | 13 14 | ax-mp | ⊢ ( 1 / 3 ) ∈ ℝ |
| 16 | 10 | nnnn0d | ⊢ ( 𝜑 → 𝑚 ∈ ℕ0 ) |
| 17 | reexpcl | ⊢ ( ( ( 1 / 3 ) ∈ ℝ ∧ 𝑚 ∈ ℕ0 ) → ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℝ ) | |
| 18 | 15 16 17 | sylancr | ⊢ ( 𝜑 → ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℝ ) |
| 19 | 1 | rpnnen2lem6 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
| 20 | 2 10 19 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
| 21 | nnrp | ⊢ ( 3 ∈ ℕ → 3 ∈ ℝ+ ) | |
| 22 | rpreccl | ⊢ ( 3 ∈ ℝ+ → ( 1 / 3 ) ∈ ℝ+ ) | |
| 23 | 13 21 22 | mp2b | ⊢ ( 1 / 3 ) ∈ ℝ+ |
| 24 | 10 | nnzd | ⊢ ( 𝜑 → 𝑚 ∈ ℤ ) |
| 25 | rpexpcl | ⊢ ( ( ( 1 / 3 ) ∈ ℝ+ ∧ 𝑚 ∈ ℤ ) → ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℝ+ ) | |
| 26 | 23 24 25 | sylancr | ⊢ ( 𝜑 → ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℝ+ ) |
| 27 | 26 | rpred | ⊢ ( 𝜑 → ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℝ ) |
| 28 | 27 | rehalfcld | ⊢ ( 𝜑 → ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ∈ ℝ ) |
| 29 | 4 | snssd | ⊢ ( 𝜑 → { 𝑚 } ⊆ ( 𝐴 ∖ 𝐵 ) ) |
| 30 | 2 | ssdifd | ⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ⊆ ( ℕ ∖ 𝐵 ) ) |
| 31 | 29 30 | sstrd | ⊢ ( 𝜑 → { 𝑚 } ⊆ ( ℕ ∖ 𝐵 ) ) |
| 32 | 10 | snssd | ⊢ ( 𝜑 → { 𝑚 } ⊆ ℕ ) |
| 33 | ssconb | ⊢ ( ( 𝐵 ⊆ ℕ ∧ { 𝑚 } ⊆ ℕ ) → ( 𝐵 ⊆ ( ℕ ∖ { 𝑚 } ) ↔ { 𝑚 } ⊆ ( ℕ ∖ 𝐵 ) ) ) | |
| 34 | 3 32 33 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ⊆ ( ℕ ∖ { 𝑚 } ) ↔ { 𝑚 } ⊆ ( ℕ ∖ 𝐵 ) ) ) |
| 35 | 31 34 | mpbird | ⊢ ( 𝜑 → 𝐵 ⊆ ( ℕ ∖ { 𝑚 } ) ) |
| 36 | difssd | ⊢ ( 𝜑 → ( ℕ ∖ { 𝑚 } ) ⊆ ℕ ) | |
| 37 | 1 | rpnnen2lem7 | ⊢ ( ( 𝐵 ⊆ ( ℕ ∖ { 𝑚 } ) ∧ ( ℕ ∖ { 𝑚 } ) ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑚 } ) ) ‘ 𝑘 ) ) |
| 38 | 35 36 10 37 | syl3anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑚 } ) ) ‘ 𝑘 ) ) |
| 39 | 1 | rpnnen2lem9 | ⊢ ( 𝑚 ∈ ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑚 } ) ) ‘ 𝑘 ) = ( 0 + ( ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) ) ) |
| 40 | 10 39 | syl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑚 } ) ) ‘ 𝑘 ) = ( 0 + ( ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) ) ) |
| 41 | 15 | recni | ⊢ ( 1 / 3 ) ∈ ℂ |
| 42 | expp1 | ⊢ ( ( ( 1 / 3 ) ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) · ( 1 / 3 ) ) ) | |
| 43 | 41 16 42 | sylancr | ⊢ ( 𝜑 → ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) · ( 1 / 3 ) ) ) |
| 44 | 27 | recnd | ⊢ ( 𝜑 → ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ ) |
| 45 | 3cn | ⊢ 3 ∈ ℂ | |
| 46 | 3ne0 | ⊢ 3 ≠ 0 | |
| 47 | divrec | ⊢ ( ( ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0 ) → ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) · ( 1 / 3 ) ) ) | |
| 48 | 45 46 47 | mp3an23 | ⊢ ( ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ → ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) · ( 1 / 3 ) ) ) |
| 49 | 44 48 | syl | ⊢ ( 𝜑 → ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) · ( 1 / 3 ) ) ) |
| 50 | 43 49 | eqtr4d | ⊢ ( 𝜑 → ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) ) |
| 51 | 50 | oveq1d | ⊢ ( 𝜑 → ( ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) = ( ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) / ( 1 − ( 1 / 3 ) ) ) ) |
| 52 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 53 | 45 46 | pm3.2i | ⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
| 54 | divsubdir | ⊢ ( ( 3 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 3 − 1 ) / 3 ) = ( ( 3 / 3 ) − ( 1 / 3 ) ) ) | |
| 55 | 45 52 53 54 | mp3an | ⊢ ( ( 3 − 1 ) / 3 ) = ( ( 3 / 3 ) − ( 1 / 3 ) ) |
| 56 | 3m1e2 | ⊢ ( 3 − 1 ) = 2 | |
| 57 | 56 | oveq1i | ⊢ ( ( 3 − 1 ) / 3 ) = ( 2 / 3 ) |
| 58 | 45 46 | dividi | ⊢ ( 3 / 3 ) = 1 |
| 59 | 58 | oveq1i | ⊢ ( ( 3 / 3 ) − ( 1 / 3 ) ) = ( 1 − ( 1 / 3 ) ) |
| 60 | 55 57 59 | 3eqtr3ri | ⊢ ( 1 − ( 1 / 3 ) ) = ( 2 / 3 ) |
| 61 | 60 | oveq2i | ⊢ ( ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) / ( 1 − ( 1 / 3 ) ) ) = ( ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) / ( 2 / 3 ) ) |
| 62 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 63 | divcan7 | ⊢ ( ( ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) / ( 2 / 3 ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) | |
| 64 | 62 53 63 | mp3an23 | ⊢ ( ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ → ( ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) / ( 2 / 3 ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) |
| 65 | 44 64 | syl | ⊢ ( 𝜑 → ( ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) / ( 2 / 3 ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) |
| 66 | 61 65 | eqtrid | ⊢ ( 𝜑 → ( ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) / ( 1 − ( 1 / 3 ) ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) |
| 67 | 51 66 | eqtrd | ⊢ ( 𝜑 → ( ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) |
| 68 | 67 | oveq2d | ⊢ ( 𝜑 → ( 0 + ( ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) ) = ( 0 + ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) ) |
| 69 | 28 | recnd | ⊢ ( 𝜑 → ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ∈ ℂ ) |
| 70 | 69 | addlidd | ⊢ ( 𝜑 → ( 0 + ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) |
| 71 | 40 68 70 | 3eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑚 } ) ) ‘ 𝑘 ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) |
| 72 | 38 71 | breqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ≤ ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) |
| 73 | rphalflt | ⊢ ( ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℝ+ → ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) < ( ( 1 / 3 ) ↑ 𝑚 ) ) | |
| 74 | 26 73 | syl | ⊢ ( 𝜑 → ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) < ( ( 1 / 3 ) ↑ 𝑚 ) ) |
| 75 | 12 28 27 72 74 | lelttrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) < ( ( 1 / 3 ) ↑ 𝑚 ) ) |
| 76 | eluznn | ⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑘 ∈ ℕ ) | |
| 77 | 10 76 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑘 ∈ ℕ ) |
| 78 | 1 | rpnnen2lem1 | ⊢ ( ( { 𝑚 } ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 ) = if ( 𝑘 ∈ { 𝑚 } , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 79 | 32 77 78 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 ) = if ( 𝑘 ∈ { 𝑚 } , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 80 | 79 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) if ( 𝑘 ∈ { 𝑚 } , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 81 | uzid | ⊢ ( 𝑚 ∈ ℤ → 𝑚 ∈ ( ℤ≥ ‘ 𝑚 ) ) | |
| 82 | 24 81 | syl | ⊢ ( 𝜑 → 𝑚 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
| 83 | 82 | snssd | ⊢ ( 𝜑 → { 𝑚 } ⊆ ( ℤ≥ ‘ 𝑚 ) ) |
| 84 | vex | ⊢ 𝑚 ∈ V | |
| 85 | oveq2 | ⊢ ( 𝑘 = 𝑚 → ( ( 1 / 3 ) ↑ 𝑘 ) = ( ( 1 / 3 ) ↑ 𝑚 ) ) | |
| 86 | 85 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℂ ↔ ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ ) ) |
| 87 | 84 86 | ralsn | ⊢ ( ∀ 𝑘 ∈ { 𝑚 } ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℂ ↔ ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ ) |
| 88 | 44 87 | sylibr | ⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝑚 } ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℂ ) |
| 89 | ssidd | ⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑚 ) ⊆ ( ℤ≥ ‘ 𝑚 ) ) | |
| 90 | 89 | orcd | ⊢ ( 𝜑 → ( ( ℤ≥ ‘ 𝑚 ) ⊆ ( ℤ≥ ‘ 𝑚 ) ∨ ( ℤ≥ ‘ 𝑚 ) ∈ Fin ) ) |
| 91 | sumss2 | ⊢ ( ( ( { 𝑚 } ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∀ 𝑘 ∈ { 𝑚 } ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℂ ) ∧ ( ( ℤ≥ ‘ 𝑚 ) ⊆ ( ℤ≥ ‘ 𝑚 ) ∨ ( ℤ≥ ‘ 𝑚 ) ∈ Fin ) ) → Σ 𝑘 ∈ { 𝑚 } ( ( 1 / 3 ) ↑ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) if ( 𝑘 ∈ { 𝑚 } , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) | |
| 92 | 83 88 90 91 | syl21anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑚 } ( ( 1 / 3 ) ↑ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) if ( 𝑘 ∈ { 𝑚 } , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 93 | 85 | sumsn | ⊢ ( ( 𝑚 ∈ ℕ ∧ ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ ) → Σ 𝑘 ∈ { 𝑚 } ( ( 1 / 3 ) ↑ 𝑘 ) = ( ( 1 / 3 ) ↑ 𝑚 ) ) |
| 94 | 10 44 93 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑚 } ( ( 1 / 3 ) ↑ 𝑘 ) = ( ( 1 / 3 ) ↑ 𝑚 ) ) |
| 95 | 80 92 94 | 3eqtr2d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 ) = ( ( 1 / 3 ) ↑ 𝑚 ) ) |
| 96 | 4 7 | syl | ⊢ ( 𝜑 → 𝑚 ∈ 𝐴 ) |
| 97 | 96 | snssd | ⊢ ( 𝜑 → { 𝑚 } ⊆ 𝐴 ) |
| 98 | 1 | rpnnen2lem7 | ⊢ ( ( { 𝑚 } ⊆ 𝐴 ∧ 𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) |
| 99 | 97 2 10 98 | syl3anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) |
| 100 | 95 99 | eqbrtrrd | ⊢ ( 𝜑 → ( ( 1 / 3 ) ↑ 𝑚 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) |
| 101 | 12 18 20 75 100 | ltletrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) < Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) |
| 102 | 12 101 | gtned | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≠ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 103 | 1 2 3 4 5 6 | rpnnen2lem10 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 104 | 103 | ex | ⊢ ( 𝜑 → ( 𝜓 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
| 105 | 104 | necon3ad | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≠ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) → ¬ 𝜓 ) ) |
| 106 | 102 105 | mpd | ⊢ ( 𝜑 → ¬ 𝜓 ) |