This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| Assertion | rpnnen2lem6 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| 2 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | nnz | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 5 | eqidd | ⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) | |
| 6 | 1 | rpnnen2lem2 | ⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |
| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |
| 8 | eluznn | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ ) | |
| 9 | 8 | adantll | ⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ ) |
| 10 | 7 9 | ffvelcdmd | ⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
| 11 | 1 | rpnnen2lem5 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
| 12 | 2 4 5 10 11 | isumrecl | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |