This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| Assertion | rpnnen2lem3 | ⊢ seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( 1 / 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| 2 | 1re | ⊢ 1 ∈ ℝ | |
| 3 | 3nn | ⊢ 3 ∈ ℕ | |
| 4 | nndivre | ⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℕ ) → ( 1 / 3 ) ∈ ℝ ) | |
| 5 | 2 3 4 | mp2an | ⊢ ( 1 / 3 ) ∈ ℝ |
| 6 | 5 | recni | ⊢ ( 1 / 3 ) ∈ ℂ |
| 7 | 6 | a1i | ⊢ ( ⊤ → ( 1 / 3 ) ∈ ℂ ) |
| 8 | 0re | ⊢ 0 ∈ ℝ | |
| 9 | 3re | ⊢ 3 ∈ ℝ | |
| 10 | 3pos | ⊢ 0 < 3 | |
| 11 | 9 10 | recgt0ii | ⊢ 0 < ( 1 / 3 ) |
| 12 | 8 5 11 | ltleii | ⊢ 0 ≤ ( 1 / 3 ) |
| 13 | absid | ⊢ ( ( ( 1 / 3 ) ∈ ℝ ∧ 0 ≤ ( 1 / 3 ) ) → ( abs ‘ ( 1 / 3 ) ) = ( 1 / 3 ) ) | |
| 14 | 5 12 13 | mp2an | ⊢ ( abs ‘ ( 1 / 3 ) ) = ( 1 / 3 ) |
| 15 | 1lt3 | ⊢ 1 < 3 | |
| 16 | recgt1 | ⊢ ( ( 3 ∈ ℝ ∧ 0 < 3 ) → ( 1 < 3 ↔ ( 1 / 3 ) < 1 ) ) | |
| 17 | 9 10 16 | mp2an | ⊢ ( 1 < 3 ↔ ( 1 / 3 ) < 1 ) |
| 18 | 15 17 | mpbi | ⊢ ( 1 / 3 ) < 1 |
| 19 | 14 18 | eqbrtri | ⊢ ( abs ‘ ( 1 / 3 ) ) < 1 |
| 20 | 19 | a1i | ⊢ ( ⊤ → ( abs ‘ ( 1 / 3 ) ) < 1 ) |
| 21 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 22 | 21 | a1i | ⊢ ( ⊤ → 1 ∈ ℕ0 ) |
| 23 | ssid | ⊢ ℕ ⊆ ℕ | |
| 24 | simpr | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 25 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 26 | 24 25 | eleqtrrdi | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑘 ∈ ℕ ) |
| 27 | 1 | rpnnen2lem1 | ⊢ ( ( ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) = if ( 𝑘 ∈ ℕ , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 28 | 23 26 27 | sylancr | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) = if ( 𝑘 ∈ ℕ , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 29 | 26 | iftrued | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → if ( 𝑘 ∈ ℕ , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) = ( ( 1 / 3 ) ↑ 𝑘 ) ) |
| 30 | 28 29 | eqtrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) = ( ( 1 / 3 ) ↑ 𝑘 ) ) |
| 31 | 7 20 22 30 | geolim2 | ⊢ ( ⊤ → seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( ( ( 1 / 3 ) ↑ 1 ) / ( 1 − ( 1 / 3 ) ) ) ) |
| 32 | 31 | mptru | ⊢ seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( ( ( 1 / 3 ) ↑ 1 ) / ( 1 − ( 1 / 3 ) ) ) |
| 33 | exp1 | ⊢ ( ( 1 / 3 ) ∈ ℂ → ( ( 1 / 3 ) ↑ 1 ) = ( 1 / 3 ) ) | |
| 34 | 6 33 | ax-mp | ⊢ ( ( 1 / 3 ) ↑ 1 ) = ( 1 / 3 ) |
| 35 | 3cn | ⊢ 3 ∈ ℂ | |
| 36 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 37 | 3ne0 | ⊢ 3 ≠ 0 | |
| 38 | 35 37 | pm3.2i | ⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
| 39 | divsubdir | ⊢ ( ( 3 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 3 − 1 ) / 3 ) = ( ( 3 / 3 ) − ( 1 / 3 ) ) ) | |
| 40 | 35 36 38 39 | mp3an | ⊢ ( ( 3 − 1 ) / 3 ) = ( ( 3 / 3 ) − ( 1 / 3 ) ) |
| 41 | 3m1e2 | ⊢ ( 3 − 1 ) = 2 | |
| 42 | 41 | oveq1i | ⊢ ( ( 3 − 1 ) / 3 ) = ( 2 / 3 ) |
| 43 | 35 37 | dividi | ⊢ ( 3 / 3 ) = 1 |
| 44 | 43 | oveq1i | ⊢ ( ( 3 / 3 ) − ( 1 / 3 ) ) = ( 1 − ( 1 / 3 ) ) |
| 45 | 40 42 44 | 3eqtr3ri | ⊢ ( 1 − ( 1 / 3 ) ) = ( 2 / 3 ) |
| 46 | 34 45 | oveq12i | ⊢ ( ( ( 1 / 3 ) ↑ 1 ) / ( 1 − ( 1 / 3 ) ) ) = ( ( 1 / 3 ) / ( 2 / 3 ) ) |
| 47 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 48 | divcan7 | ⊢ ( ( 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 1 / 3 ) / ( 2 / 3 ) ) = ( 1 / 2 ) ) | |
| 49 | 36 47 38 48 | mp3an | ⊢ ( ( 1 / 3 ) / ( 2 / 3 ) ) = ( 1 / 2 ) |
| 50 | 46 49 | eqtri | ⊢ ( ( ( 1 / 3 ) ↑ 1 ) / ( 1 − ( 1 / 3 ) ) ) = ( 1 / 2 ) |
| 51 | 32 50 | breqtri | ⊢ seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( 1 / 2 ) |