This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 31-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| Assertion | rpnnen2lem4 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| 2 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 3 | 0re | ⊢ 0 ∈ ℝ | |
| 4 | 1re | ⊢ 1 ∈ ℝ | |
| 5 | 3nn | ⊢ 3 ∈ ℕ | |
| 6 | nndivre | ⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℕ ) → ( 1 / 3 ) ∈ ℝ ) | |
| 7 | 4 5 6 | mp2an | ⊢ ( 1 / 3 ) ∈ ℝ |
| 8 | 3re | ⊢ 3 ∈ ℝ | |
| 9 | 3pos | ⊢ 0 < 3 | |
| 10 | 8 9 | recgt0ii | ⊢ 0 < ( 1 / 3 ) |
| 11 | 3 7 10 | ltleii | ⊢ 0 ≤ ( 1 / 3 ) |
| 12 | expge0 | ⊢ ( ( ( 1 / 3 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ ( 1 / 3 ) ) → 0 ≤ ( ( 1 / 3 ) ↑ 𝑘 ) ) | |
| 13 | 7 12 | mp3an1 | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 0 ≤ ( 1 / 3 ) ) → 0 ≤ ( ( 1 / 3 ) ↑ 𝑘 ) ) |
| 14 | 2 11 13 | sylancl | ⊢ ( 𝑘 ∈ ℕ → 0 ≤ ( ( 1 / 3 ) ↑ 𝑘 ) ) |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 1 / 3 ) ↑ 𝑘 ) ) |
| 16 | 0le0 | ⊢ 0 ≤ 0 | |
| 17 | breq2 | ⊢ ( ( ( 1 / 3 ) ↑ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) → ( 0 ≤ ( ( 1 / 3 ) ↑ 𝑘 ) ↔ 0 ≤ if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) ) | |
| 18 | breq2 | ⊢ ( 0 = if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) ) | |
| 19 | 17 18 | ifboth | ⊢ ( ( 0 ≤ ( ( 1 / 3 ) ↑ 𝑘 ) ∧ 0 ≤ 0 ) → 0 ≤ if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 20 | 15 16 19 | sylancl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → 0 ≤ if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 21 | sstr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ) → 𝐴 ⊆ ℕ ) | |
| 22 | 1 | rpnnen2lem1 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 23 | 21 22 | stoic3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 24 | 20 23 | breqtrrd | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) |
| 25 | reexpcl | ⊢ ( ( ( 1 / 3 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℝ ) | |
| 26 | 7 2 25 | sylancr | ⊢ ( 𝑘 ∈ ℕ → ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℝ ) |
| 27 | 26 | 3ad2ant3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℝ ) |
| 28 | 0red | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → 0 ∈ ℝ ) | |
| 29 | simp1 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → 𝐴 ⊆ 𝐵 ) | |
| 30 | 29 | sseld | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ 𝐴 → 𝑘 ∈ 𝐵 ) ) |
| 31 | ifle | ⊢ ( ( ( ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ≤ ( ( 1 / 3 ) ↑ 𝑘 ) ) ∧ ( 𝑘 ∈ 𝐴 → 𝑘 ∈ 𝐵 ) ) → if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ≤ if ( 𝑘 ∈ 𝐵 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) | |
| 32 | 27 28 15 30 31 | syl31anc | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ≤ if ( 𝑘 ∈ 𝐵 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 33 | 1 | rpnnen2lem1 | ⊢ ( ( 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 34 | 33 | 3adant1 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 35 | 32 23 34 | 3brtr4d | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 36 | 24 35 | jca | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |