This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| Assertion | rpnnen2lem2 | ⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| 2 | nnex | ⊢ ℕ ∈ V | |
| 3 | 2 | elpw2 | ⊢ ( 𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ ) |
| 4 | eleq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝐴 ) ) | |
| 5 | 4 | ifbid | ⊢ ( 𝑥 = 𝐴 → if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) = if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) |
| 6 | 5 | mpteq2dv | ⊢ ( 𝑥 = 𝐴 → ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
| 7 | 2 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ∈ V |
| 8 | 6 1 7 | fvmpt | ⊢ ( 𝐴 ∈ 𝒫 ℕ → ( 𝐹 ‘ 𝐴 ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
| 9 | 3 8 | sylbir | ⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ 𝐴 ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
| 10 | 1re | ⊢ 1 ∈ ℝ | |
| 11 | 3nn | ⊢ 3 ∈ ℕ | |
| 12 | nndivre | ⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℕ ) → ( 1 / 3 ) ∈ ℝ ) | |
| 13 | 10 11 12 | mp2an | ⊢ ( 1 / 3 ) ∈ ℝ |
| 14 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 15 | reexpcl | ⊢ ( ( ( 1 / 3 ) ∈ ℝ ∧ 𝑛 ∈ ℕ0 ) → ( ( 1 / 3 ) ↑ 𝑛 ) ∈ ℝ ) | |
| 16 | 13 14 15 | sylancr | ⊢ ( 𝑛 ∈ ℕ → ( ( 1 / 3 ) ↑ 𝑛 ) ∈ ℝ ) |
| 17 | 0re | ⊢ 0 ∈ ℝ | |
| 18 | ifcl | ⊢ ( ( ( ( 1 / 3 ) ↑ 𝑛 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ∈ ℝ ) | |
| 19 | 16 17 18 | sylancl | ⊢ ( 𝑛 ∈ ℕ → if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ∈ ℝ ) |
| 20 | 19 | adantl | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ∈ ℝ ) |
| 21 | 9 20 | fmpt3d | ⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |