This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-ordering principle: any nonempty set of positive integers has a least element. Theorem I.37 (well-ordering principle) of Apostol p. 34. (Contributed by NM, 17-Aug-2001)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnwo | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 2 | 1 | sseq2i | ⊢ ( 𝐴 ⊆ ℕ ↔ 𝐴 ⊆ ( ℤ≥ ‘ 1 ) ) |
| 3 | uzwo | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) | |
| 4 | 2 3 | sylanb | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |