This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| Assertion | rpnnen2lem7 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| 2 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | simp3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ ) | |
| 4 | 3 | nnzd | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 5 | eqidd | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) | |
| 6 | eluznn | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ ) | |
| 7 | 3 6 | sylan | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ ) |
| 8 | sstr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ) → 𝐴 ⊆ ℕ ) | |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝐴 ⊆ ℕ ) |
| 10 | 1 | rpnnen2lem2 | ⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |
| 11 | 9 10 | syl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |
| 12 | 11 | ffvelcdmda | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
| 13 | 7 12 | syldan | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
| 14 | eqidd | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | |
| 15 | 1 | rpnnen2lem2 | ⊢ ( 𝐵 ⊆ ℕ → ( 𝐹 ‘ 𝐵 ) : ℕ ⟶ ℝ ) |
| 16 | 15 | 3ad2ant2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝐹 ‘ 𝐵 ) : ℕ ⟶ ℝ ) |
| 17 | 16 | ffvelcdmda | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
| 18 | 7 17 | syldan | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
| 19 | 1 | rpnnen2lem4 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
| 20 | 19 | simprd | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 21 | 20 | 3expa | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 22 | 21 | 3adantl3 | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 23 | 7 22 | syldan | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 24 | 1 | rpnnen2lem5 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
| 25 | 8 24 | stoic3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
| 26 | 1 | rpnnen2lem5 | ⊢ ( ( 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹 ‘ 𝐵 ) ) ∈ dom ⇝ ) |
| 27 | 26 | 3adant1 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹 ‘ 𝐵 ) ) ∈ dom ⇝ ) |
| 28 | 2 4 5 13 14 18 23 25 27 | isumle | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |