This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two subclasses is a subclass. Theorem 27 of Suppes p. 27 and its converse. (Contributed by NM, 11-Jun-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unss | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝐶 ) ) | |
| 2 | 19.26 | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ) | |
| 3 | elunant | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ) | |
| 4 | 3 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝐶 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ) |
| 5 | df-ss | ⊢ ( 𝐴 ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) | |
| 6 | df-ss | ⊢ ( 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) | |
| 7 | 5 6 | anbi12i | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ) |
| 8 | 2 4 7 | 3bitr4i | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝐶 ) ↔ ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ) |
| 9 | 1 8 | bitr2i | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 ) |