This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| Assertion | rpnnen2lem5 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| 2 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 3 | 1nn | ⊢ 1 ∈ ℕ | |
| 4 | 3 | a1i | ⊢ ( 𝐴 ⊆ ℕ → 1 ∈ ℕ ) |
| 5 | ssid | ⊢ ℕ ⊆ ℕ | |
| 6 | 1 | rpnnen2lem2 | ⊢ ( ℕ ⊆ ℕ → ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ ) |
| 7 | 5 6 | mp1i | ⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ ) |
| 8 | 7 | ffvelcdmda | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ∈ ℝ ) |
| 9 | 1 | rpnnen2lem2 | ⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |
| 10 | 9 | ffvelcdmda | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
| 11 | 1 | rpnnen2lem3 | ⊢ seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( 1 / 2 ) |
| 12 | seqex | ⊢ seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ∈ V | |
| 13 | ovex | ⊢ ( 1 / 2 ) ∈ V | |
| 14 | 12 13 | breldm | ⊢ ( seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( 1 / 2 ) → seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ∈ dom ⇝ ) |
| 15 | 11 14 | mp1i | ⊢ ( 𝐴 ⊆ ℕ → seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ∈ dom ⇝ ) |
| 16 | elnnuz | ⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 17 | 1 | rpnnen2lem4 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) ) |
| 18 | 5 17 | mp3an2 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) ) |
| 19 | 16 18 | sylan2br | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) ) |
| 20 | 19 | simpld | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) |
| 21 | 19 | simprd | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) |
| 22 | 2 4 8 10 15 20 21 | cvgcmp | ⊢ ( 𝐴 ⊆ ℕ → seq 1 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
| 23 | 22 | adantr | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 1 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
| 24 | simpr | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ ) | |
| 25 | 10 | adantlr | ⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
| 26 | 25 | recnd | ⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℂ ) |
| 27 | 2 24 26 | iserex | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → ( seq 1 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ↔ seq 𝑀 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) ) |
| 28 | 23 27 | mpbid | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |