This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpnnen1lem.1 | ⊢ 𝑇 = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } | |
| rpnnen1lem.2 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) | ||
| rpnnen1lem.n | ⊢ ℕ ∈ V | ||
| rpnnen1lem.q | ⊢ ℚ ∈ V | ||
| Assertion | rpnnen1lem5 | ⊢ ( 𝑥 ∈ ℝ → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen1lem.1 | ⊢ 𝑇 = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } | |
| 2 | rpnnen1lem.2 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) | |
| 3 | rpnnen1lem.n | ⊢ ℕ ∈ V | |
| 4 | rpnnen1lem.q | ⊢ ℚ ∈ V | |
| 5 | 1 2 3 4 | rpnnen1lem3 | ⊢ ( 𝑥 ∈ ℝ → ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) |
| 6 | 1 2 3 4 | rpnnen1lem1 | ⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) ∈ ( ℚ ↑m ℕ ) ) |
| 7 | 4 3 | elmap | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℚ ↑m ℕ ) ↔ ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ ) |
| 8 | 6 7 | sylib | ⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ ) |
| 9 | frn | ⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ran ( 𝐹 ‘ 𝑥 ) ⊆ ℚ ) | |
| 10 | qssre | ⊢ ℚ ⊆ ℝ | |
| 11 | 9 10 | sstrdi | ⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ) |
| 12 | 8 11 | syl | ⊢ ( 𝑥 ∈ ℝ → ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ) |
| 13 | 1nn | ⊢ 1 ∈ ℕ | |
| 14 | 13 | ne0ii | ⊢ ℕ ≠ ∅ |
| 15 | fdm | ⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → dom ( 𝐹 ‘ 𝑥 ) = ℕ ) | |
| 16 | 15 | neeq1d | ⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ( dom ( 𝐹 ‘ 𝑥 ) ≠ ∅ ↔ ℕ ≠ ∅ ) ) |
| 17 | 14 16 | mpbiri | ⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → dom ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
| 18 | dm0rn0 | ⊢ ( dom ( 𝐹 ‘ 𝑥 ) = ∅ ↔ ran ( 𝐹 ‘ 𝑥 ) = ∅ ) | |
| 19 | 18 | necon3bii | ⊢ ( dom ( 𝐹 ‘ 𝑥 ) ≠ ∅ ↔ ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
| 20 | 17 19 | sylib | ⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
| 21 | 8 20 | syl | ⊢ ( 𝑥 ∈ ℝ → ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
| 22 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑛 ≤ 𝑦 ↔ 𝑛 ≤ 𝑥 ) ) | |
| 23 | 22 | ralbidv | ⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ↔ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) ) |
| 24 | 23 | rspcev | ⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) |
| 25 | 5 24 | mpdan | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) |
| 26 | id | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ ) | |
| 27 | suprleub | ⊢ ( ( ( ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ∧ ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) ∧ 𝑥 ∈ ℝ ) → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) ) | |
| 28 | 12 21 25 26 27 | syl31anc | ⊢ ( 𝑥 ∈ ℝ → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) ) |
| 29 | 5 28 | mpbird | ⊢ ( 𝑥 ∈ ℝ → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ≤ 𝑥 ) |
| 30 | 1 2 3 4 | rpnnen1lem4 | ⊢ ( 𝑥 ∈ ℝ → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ) |
| 31 | resubcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ) → ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ∈ ℝ ) | |
| 32 | 30 31 | mpdan | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ∈ ℝ ) |
| 33 | 32 | adantr | ⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) → ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ∈ ℝ ) |
| 34 | posdif | ⊢ ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ↔ 0 < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ) | |
| 35 | 30 34 | mpancom | ⊢ ( 𝑥 ∈ ℝ → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ↔ 0 < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ) |
| 36 | 35 | biimpa | ⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) → 0 < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) |
| 37 | 36 | gt0ne0d | ⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) → ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ≠ 0 ) |
| 38 | 33 37 | rereccld | ⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) → ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ∈ ℝ ) |
| 39 | arch | ⊢ ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ∈ ℝ → ∃ 𝑘 ∈ ℕ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ) | |
| 40 | 38 39 | syl | ⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) → ∃ 𝑘 ∈ ℕ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ) |
| 41 | 40 | ex | ⊢ ( 𝑥 ∈ ℝ → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 → ∃ 𝑘 ∈ ℕ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ) ) |
| 42 | 1 2 | rpnnen1lem2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( 𝑇 , ℝ , < ) ∈ ℤ ) |
| 43 | 42 | zred | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( 𝑇 , ℝ , < ) ∈ ℝ ) |
| 44 | 43 | 3adant3 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ) → sup ( 𝑇 , ℝ , < ) ∈ ℝ ) |
| 45 | 44 | ltp1d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ) → sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) |
| 46 | 33 36 | jca | ⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) → ( ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ∈ ℝ ∧ 0 < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ) |
| 47 | nnre | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) | |
| 48 | nngt0 | ⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) | |
| 49 | 47 48 | jca | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
| 50 | ltrec1 | ⊢ ( ( ( ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ∈ ℝ ∧ 0 < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ↔ ( 1 / 𝑘 ) < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ) | |
| 51 | 46 49 50 | syl2an | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ↔ ( 1 / 𝑘 ) < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ) |
| 52 | 30 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ) |
| 53 | nnrecre | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) | |
| 54 | 53 | adantl | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ ) |
| 55 | simpll | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ ) | |
| 56 | 52 54 55 | ltaddsub2d | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) < 𝑥 ↔ ( 1 / 𝑘 ) < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ) |
| 57 | 12 | adantr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ) |
| 58 | ffn | ⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ( 𝐹 ‘ 𝑥 ) Fn ℕ ) | |
| 59 | 8 58 | syl | ⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) Fn ℕ ) |
| 60 | fnfvelrn | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ran ( 𝐹 ‘ 𝑥 ) ) | |
| 61 | 59 60 | sylan | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ran ( 𝐹 ‘ 𝑥 ) ) |
| 62 | 57 61 | sseldd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ℝ ) |
| 63 | 30 | adantr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ) |
| 64 | 53 | adantl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ ) |
| 65 | 12 21 25 | 3jca | ⊢ ( 𝑥 ∈ ℝ → ( ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ∧ ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) ) |
| 66 | 65 | adantr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ∧ ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) ) |
| 67 | suprub | ⊢ ( ( ( ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ∧ ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ran ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ≤ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) | |
| 68 | 66 61 67 | syl2anc | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ≤ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) |
| 69 | 62 63 64 68 | leadd1dd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ≤ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) ) |
| 70 | 62 64 | readdcld | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ∈ ℝ ) |
| 71 | readdcl | ⊢ ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ∧ ( 1 / 𝑘 ) ∈ ℝ ) → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) ∈ ℝ ) | |
| 72 | 30 53 71 | syl2an | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) ∈ ℝ ) |
| 73 | simpl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ ) | |
| 74 | lelttr | ⊢ ( ( ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ∈ ℝ ∧ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ≤ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) ∧ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) < 𝑥 ) → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) | |
| 75 | 74 | expd | ⊢ ( ( ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ∈ ℝ ∧ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ≤ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) → ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) < 𝑥 → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) ) |
| 76 | 70 72 73 75 | syl3anc | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ≤ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) → ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) < 𝑥 → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) ) |
| 77 | 69 76 | mpd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) < 𝑥 → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) |
| 78 | 77 | adantlr | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) < 𝑥 → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) |
| 79 | 56 78 | sylbird | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) |
| 80 | 51 79 | sylbid | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) |
| 81 | 42 | peano2zd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ ℤ ) |
| 82 | oveq1 | ⊢ ( 𝑛 = ( sup ( 𝑇 , ℝ , < ) + 1 ) → ( 𝑛 / 𝑘 ) = ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) ) | |
| 83 | 82 | breq1d | ⊢ ( 𝑛 = ( sup ( 𝑇 , ℝ , < ) + 1 ) → ( ( 𝑛 / 𝑘 ) < 𝑥 ↔ ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) < 𝑥 ) ) |
| 84 | 83 1 | elrab2 | ⊢ ( ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ 𝑇 ↔ ( ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ ℤ ∧ ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) < 𝑥 ) ) |
| 85 | 84 | biimpri | ⊢ ( ( ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ ℤ ∧ ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) < 𝑥 ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ 𝑇 ) |
| 86 | 81 85 | sylan | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) < 𝑥 ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ 𝑇 ) |
| 87 | ssrab2 | ⊢ { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ⊆ ℤ | |
| 88 | 1 87 | eqsstri | ⊢ 𝑇 ⊆ ℤ |
| 89 | zssre | ⊢ ℤ ⊆ ℝ | |
| 90 | 88 89 | sstri | ⊢ 𝑇 ⊆ ℝ |
| 91 | 90 | a1i | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 𝑇 ⊆ ℝ ) |
| 92 | remulcl | ⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) | |
| 93 | 92 | ancoms | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
| 94 | 47 93 | sylan2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
| 95 | btwnz | ⊢ ( ( 𝑘 · 𝑥 ) ∈ ℝ → ( ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ∧ ∃ 𝑛 ∈ ℤ ( 𝑘 · 𝑥 ) < 𝑛 ) ) | |
| 96 | 95 | simpld | ⊢ ( ( 𝑘 · 𝑥 ) ∈ ℝ → ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ) |
| 97 | 94 96 | syl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ) |
| 98 | zre | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℝ ) | |
| 99 | 98 | adantl | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℝ ) |
| 100 | simpll | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → 𝑥 ∈ ℝ ) | |
| 101 | 49 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
| 102 | ltdivmul | ⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → ( ( 𝑛 / 𝑘 ) < 𝑥 ↔ 𝑛 < ( 𝑘 · 𝑥 ) ) ) | |
| 103 | 99 100 101 102 | syl3anc | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 / 𝑘 ) < 𝑥 ↔ 𝑛 < ( 𝑘 · 𝑥 ) ) ) |
| 104 | 103 | rexbidva | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℤ ( 𝑛 / 𝑘 ) < 𝑥 ↔ ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ) ) |
| 105 | 97 104 | mpbird | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∃ 𝑛 ∈ ℤ ( 𝑛 / 𝑘 ) < 𝑥 ) |
| 106 | rabn0 | ⊢ ( { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ≠ ∅ ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 / 𝑘 ) < 𝑥 ) | |
| 107 | 105 106 | sylibr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ≠ ∅ ) |
| 108 | 1 | neeq1i | ⊢ ( 𝑇 ≠ ∅ ↔ { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ≠ ∅ ) |
| 109 | 107 108 | sylibr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 𝑇 ≠ ∅ ) |
| 110 | 1 | reqabi | ⊢ ( 𝑛 ∈ 𝑇 ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑛 / 𝑘 ) < 𝑥 ) ) |
| 111 | 47 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → 𝑘 ∈ ℝ ) |
| 112 | 111 100 92 | syl2anc | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
| 113 | ltle | ⊢ ( ( 𝑛 ∈ ℝ ∧ ( 𝑘 · 𝑥 ) ∈ ℝ ) → ( 𝑛 < ( 𝑘 · 𝑥 ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) | |
| 114 | 99 112 113 | syl2anc | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 < ( 𝑘 · 𝑥 ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
| 115 | 103 114 | sylbid | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 / 𝑘 ) < 𝑥 → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
| 116 | 115 | impr | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ℤ ∧ ( 𝑛 / 𝑘 ) < 𝑥 ) ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) |
| 117 | 110 116 | sylan2b | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ 𝑇 ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) |
| 118 | 117 | ralrimiva | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) |
| 119 | breq2 | ⊢ ( 𝑦 = ( 𝑘 · 𝑥 ) → ( 𝑛 ≤ 𝑦 ↔ 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) | |
| 120 | 119 | ralbidv | ⊢ ( 𝑦 = ( 𝑘 · 𝑥 ) → ( ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
| 121 | 120 | rspcev | ⊢ ( ( ( 𝑘 · 𝑥 ) ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) |
| 122 | 94 118 121 | syl2anc | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) |
| 123 | 91 109 122 | 3jca | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) ) |
| 124 | suprub | ⊢ ( ( ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) ∧ ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ 𝑇 ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ≤ sup ( 𝑇 , ℝ , < ) ) | |
| 125 | 123 124 | sylan | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ 𝑇 ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ≤ sup ( 𝑇 , ℝ , < ) ) |
| 126 | 86 125 | syldan | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) < 𝑥 ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ≤ sup ( 𝑇 , ℝ , < ) ) |
| 127 | 126 | ex | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) < 𝑥 → ( sup ( 𝑇 , ℝ , < ) + 1 ) ≤ sup ( 𝑇 , ℝ , < ) ) ) |
| 128 | 42 | zcnd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( 𝑇 , ℝ , < ) ∈ ℂ ) |
| 129 | 1cnd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℂ ) | |
| 130 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 131 | nnne0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) | |
| 132 | 130 131 | jca | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) |
| 133 | 132 | adantl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) |
| 134 | divdir | ⊢ ( ( sup ( 𝑇 , ℝ , < ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) → ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) = ( ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) + ( 1 / 𝑘 ) ) ) | |
| 135 | 128 129 133 134 | syl3anc | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) = ( ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) + ( 1 / 𝑘 ) ) ) |
| 136 | 3 | mptex | ⊢ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ∈ V |
| 137 | 2 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ∈ V ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
| 138 | 136 137 | mpan2 | ⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) = ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
| 139 | 138 | fveq1d | ⊢ ( 𝑥 ∈ ℝ → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ‘ 𝑘 ) ) |
| 140 | ovex | ⊢ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ∈ V | |
| 141 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) = ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) | |
| 142 | 141 | fvmpt2 | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ∈ V ) → ( ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ‘ 𝑘 ) = ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
| 143 | 140 142 | mpan2 | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ‘ 𝑘 ) = ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
| 144 | 139 143 | sylan9eq | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) = ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
| 145 | 144 | oveq1d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) = ( ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) + ( 1 / 𝑘 ) ) ) |
| 146 | 135 145 | eqtr4d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) = ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ) |
| 147 | 146 | breq1d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) < 𝑥 ↔ ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) |
| 148 | 81 | zred | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ ℝ ) |
| 149 | 148 43 | lenltd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( sup ( 𝑇 , ℝ , < ) + 1 ) ≤ sup ( 𝑇 , ℝ , < ) ↔ ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) |
| 150 | 127 147 149 | 3imtr3d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 → ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) |
| 151 | 150 | adantlr | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 → ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) |
| 152 | 80 151 | syld | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 → ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) |
| 153 | 152 | exp31 | ⊢ ( 𝑥 ∈ ℝ → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 → ( 𝑘 ∈ ℕ → ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 → ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ) |
| 154 | 153 | com4l | ⊢ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 → ( 𝑘 ∈ ℕ → ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 → ( 𝑥 ∈ ℝ → ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ) |
| 155 | 154 | com14 | ⊢ ( 𝑥 ∈ ℝ → ( 𝑘 ∈ ℕ → ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 → ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ) |
| 156 | 155 | 3imp | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ) → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 → ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) |
| 157 | 45 156 | mt2d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ) → ¬ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) |
| 158 | 157 | rexlimdv3a | ⊢ ( 𝑥 ∈ ℝ → ( ∃ 𝑘 ∈ ℕ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 → ¬ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ) |
| 159 | 41 158 | syld | ⊢ ( 𝑥 ∈ ℝ → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 → ¬ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ) |
| 160 | 159 | pm2.01d | ⊢ ( 𝑥 ∈ ℝ → ¬ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) |
| 161 | eqlelt | ⊢ ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = 𝑥 ↔ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ≤ 𝑥 ∧ ¬ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ) ) | |
| 162 | 30 161 | mpancom | ⊢ ( 𝑥 ∈ ℝ → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = 𝑥 ↔ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ≤ 𝑥 ∧ ¬ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ) ) |
| 163 | 29 160 162 | mpbir2and | ⊢ ( 𝑥 ∈ ℝ → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = 𝑥 ) |