This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 15-Aug-2021) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpnnen1lem.1 | ⊢ 𝑇 = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } | |
| rpnnen1lem.2 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) | ||
| rpnnen1lem.n | ⊢ ℕ ∈ V | ||
| rpnnen1lem.q | ⊢ ℚ ∈ V | ||
| Assertion | rpnnen1lem6 | ⊢ ℝ ≼ ( ℚ ↑m ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen1lem.1 | ⊢ 𝑇 = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } | |
| 2 | rpnnen1lem.2 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) | |
| 3 | rpnnen1lem.n | ⊢ ℕ ∈ V | |
| 4 | rpnnen1lem.q | ⊢ ℚ ∈ V | |
| 5 | ovex | ⊢ ( ℚ ↑m ℕ ) ∈ V | |
| 6 | 1 2 3 4 | rpnnen1lem1 | ⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) ∈ ( ℚ ↑m ℕ ) ) |
| 7 | rneq | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → ran ( 𝐹 ‘ 𝑥 ) = ran ( 𝐹 ‘ 𝑦 ) ) | |
| 8 | 7 | supeq1d | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = sup ( ran ( 𝐹 ‘ 𝑦 ) , ℝ , < ) ) |
| 9 | 1 2 3 4 | rpnnen1lem5 | ⊢ ( 𝑥 ∈ ℝ → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = 𝑥 ) |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 11 | 10 | rneqd | ⊢ ( 𝑥 = 𝑦 → ran ( 𝐹 ‘ 𝑥 ) = ran ( 𝐹 ‘ 𝑦 ) ) |
| 12 | 11 | supeq1d | ⊢ ( 𝑥 = 𝑦 → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = sup ( ran ( 𝐹 ‘ 𝑦 ) , ℝ , < ) ) |
| 13 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = 𝑥 ↔ sup ( ran ( 𝐹 ‘ 𝑦 ) , ℝ , < ) = 𝑦 ) ) |
| 15 | 14 9 | vtoclga | ⊢ ( 𝑦 ∈ ℝ → sup ( ran ( 𝐹 ‘ 𝑦 ) , ℝ , < ) = 𝑦 ) |
| 16 | 9 15 | eqeqan12d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = sup ( ran ( 𝐹 ‘ 𝑦 ) , ℝ , < ) ↔ 𝑥 = 𝑦 ) ) |
| 17 | 8 16 | imbitrid | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 18 | 17 10 | impbid1 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 19 | 6 18 | dom2 | ⊢ ( ( ℚ ↑m ℕ ) ∈ V → ℝ ≼ ( ℚ ↑m ℕ ) ) |
| 20 | 5 19 | ax-mp | ⊢ ℝ ≼ ( ℚ ↑m ℕ ) |