This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpnnen1lem.1 | |- T = { n e. ZZ | ( n / k ) < x } |
|
| rpnnen1lem.2 | |- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
||
| rpnnen1lem.n | |- NN e. _V |
||
| rpnnen1lem.q | |- QQ e. _V |
||
| Assertion | rpnnen1lem5 | |- ( x e. RR -> sup ( ran ( F ` x ) , RR , < ) = x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen1lem.1 | |- T = { n e. ZZ | ( n / k ) < x } |
|
| 2 | rpnnen1lem.2 | |- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
|
| 3 | rpnnen1lem.n | |- NN e. _V |
|
| 4 | rpnnen1lem.q | |- QQ e. _V |
|
| 5 | 1 2 3 4 | rpnnen1lem3 | |- ( x e. RR -> A. n e. ran ( F ` x ) n <_ x ) |
| 6 | 1 2 3 4 | rpnnen1lem1 | |- ( x e. RR -> ( F ` x ) e. ( QQ ^m NN ) ) |
| 7 | 4 3 | elmap | |- ( ( F ` x ) e. ( QQ ^m NN ) <-> ( F ` x ) : NN --> QQ ) |
| 8 | 6 7 | sylib | |- ( x e. RR -> ( F ` x ) : NN --> QQ ) |
| 9 | frn | |- ( ( F ` x ) : NN --> QQ -> ran ( F ` x ) C_ QQ ) |
|
| 10 | qssre | |- QQ C_ RR |
|
| 11 | 9 10 | sstrdi | |- ( ( F ` x ) : NN --> QQ -> ran ( F ` x ) C_ RR ) |
| 12 | 8 11 | syl | |- ( x e. RR -> ran ( F ` x ) C_ RR ) |
| 13 | 1nn | |- 1 e. NN |
|
| 14 | 13 | ne0ii | |- NN =/= (/) |
| 15 | fdm | |- ( ( F ` x ) : NN --> QQ -> dom ( F ` x ) = NN ) |
|
| 16 | 15 | neeq1d | |- ( ( F ` x ) : NN --> QQ -> ( dom ( F ` x ) =/= (/) <-> NN =/= (/) ) ) |
| 17 | 14 16 | mpbiri | |- ( ( F ` x ) : NN --> QQ -> dom ( F ` x ) =/= (/) ) |
| 18 | dm0rn0 | |- ( dom ( F ` x ) = (/) <-> ran ( F ` x ) = (/) ) |
|
| 19 | 18 | necon3bii | |- ( dom ( F ` x ) =/= (/) <-> ran ( F ` x ) =/= (/) ) |
| 20 | 17 19 | sylib | |- ( ( F ` x ) : NN --> QQ -> ran ( F ` x ) =/= (/) ) |
| 21 | 8 20 | syl | |- ( x e. RR -> ran ( F ` x ) =/= (/) ) |
| 22 | breq2 | |- ( y = x -> ( n <_ y <-> n <_ x ) ) |
|
| 23 | 22 | ralbidv | |- ( y = x -> ( A. n e. ran ( F ` x ) n <_ y <-> A. n e. ran ( F ` x ) n <_ x ) ) |
| 24 | 23 | rspcev | |- ( ( x e. RR /\ A. n e. ran ( F ` x ) n <_ x ) -> E. y e. RR A. n e. ran ( F ` x ) n <_ y ) |
| 25 | 5 24 | mpdan | |- ( x e. RR -> E. y e. RR A. n e. ran ( F ` x ) n <_ y ) |
| 26 | id | |- ( x e. RR -> x e. RR ) |
|
| 27 | suprleub | |- ( ( ( ran ( F ` x ) C_ RR /\ ran ( F ` x ) =/= (/) /\ E. y e. RR A. n e. ran ( F ` x ) n <_ y ) /\ x e. RR ) -> ( sup ( ran ( F ` x ) , RR , < ) <_ x <-> A. n e. ran ( F ` x ) n <_ x ) ) |
|
| 28 | 12 21 25 26 27 | syl31anc | |- ( x e. RR -> ( sup ( ran ( F ` x ) , RR , < ) <_ x <-> A. n e. ran ( F ` x ) n <_ x ) ) |
| 29 | 5 28 | mpbird | |- ( x e. RR -> sup ( ran ( F ` x ) , RR , < ) <_ x ) |
| 30 | 1 2 3 4 | rpnnen1lem4 | |- ( x e. RR -> sup ( ran ( F ` x ) , RR , < ) e. RR ) |
| 31 | resubcl | |- ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) e. RR ) -> ( x - sup ( ran ( F ` x ) , RR , < ) ) e. RR ) |
|
| 32 | 30 31 | mpdan | |- ( x e. RR -> ( x - sup ( ran ( F ` x ) , RR , < ) ) e. RR ) |
| 33 | 32 | adantr | |- ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) -> ( x - sup ( ran ( F ` x ) , RR , < ) ) e. RR ) |
| 34 | posdif | |- ( ( sup ( ran ( F ` x ) , RR , < ) e. RR /\ x e. RR ) -> ( sup ( ran ( F ` x ) , RR , < ) < x <-> 0 < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) ) |
|
| 35 | 30 34 | mpancom | |- ( x e. RR -> ( sup ( ran ( F ` x ) , RR , < ) < x <-> 0 < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) ) |
| 36 | 35 | biimpa | |- ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) -> 0 < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) |
| 37 | 36 | gt0ne0d | |- ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) -> ( x - sup ( ran ( F ` x ) , RR , < ) ) =/= 0 ) |
| 38 | 33 37 | rereccld | |- ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) -> ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) e. RR ) |
| 39 | arch | |- ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) e. RR -> E. k e. NN ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k ) |
|
| 40 | 38 39 | syl | |- ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) -> E. k e. NN ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k ) |
| 41 | 40 | ex | |- ( x e. RR -> ( sup ( ran ( F ` x ) , RR , < ) < x -> E. k e. NN ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k ) ) |
| 42 | 1 2 | rpnnen1lem2 | |- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. ZZ ) |
| 43 | 42 | zred | |- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. RR ) |
| 44 | 43 | 3adant3 | |- ( ( x e. RR /\ k e. NN /\ ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k ) -> sup ( T , RR , < ) e. RR ) |
| 45 | 44 | ltp1d | |- ( ( x e. RR /\ k e. NN /\ ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k ) -> sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) |
| 46 | 33 36 | jca | |- ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) -> ( ( x - sup ( ran ( F ` x ) , RR , < ) ) e. RR /\ 0 < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) ) |
| 47 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 48 | nngt0 | |- ( k e. NN -> 0 < k ) |
|
| 49 | 47 48 | jca | |- ( k e. NN -> ( k e. RR /\ 0 < k ) ) |
| 50 | ltrec1 | |- ( ( ( ( x - sup ( ran ( F ` x ) , RR , < ) ) e. RR /\ 0 < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) /\ ( k e. RR /\ 0 < k ) ) -> ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k <-> ( 1 / k ) < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) ) |
|
| 51 | 46 49 50 | syl2an | |- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k <-> ( 1 / k ) < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) ) |
| 52 | 30 | ad2antrr | |- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> sup ( ran ( F ` x ) , RR , < ) e. RR ) |
| 53 | nnrecre | |- ( k e. NN -> ( 1 / k ) e. RR ) |
|
| 54 | 53 | adantl | |- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( 1 / k ) e. RR ) |
| 55 | simpll | |- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> x e. RR ) |
|
| 56 | 52 54 55 | ltaddsub2d | |- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) < x <-> ( 1 / k ) < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) ) |
| 57 | 12 | adantr | |- ( ( x e. RR /\ k e. NN ) -> ran ( F ` x ) C_ RR ) |
| 58 | ffn | |- ( ( F ` x ) : NN --> QQ -> ( F ` x ) Fn NN ) |
|
| 59 | 8 58 | syl | |- ( x e. RR -> ( F ` x ) Fn NN ) |
| 60 | fnfvelrn | |- ( ( ( F ` x ) Fn NN /\ k e. NN ) -> ( ( F ` x ) ` k ) e. ran ( F ` x ) ) |
|
| 61 | 59 60 | sylan | |- ( ( x e. RR /\ k e. NN ) -> ( ( F ` x ) ` k ) e. ran ( F ` x ) ) |
| 62 | 57 61 | sseldd | |- ( ( x e. RR /\ k e. NN ) -> ( ( F ` x ) ` k ) e. RR ) |
| 63 | 30 | adantr | |- ( ( x e. RR /\ k e. NN ) -> sup ( ran ( F ` x ) , RR , < ) e. RR ) |
| 64 | 53 | adantl | |- ( ( x e. RR /\ k e. NN ) -> ( 1 / k ) e. RR ) |
| 65 | 12 21 25 | 3jca | |- ( x e. RR -> ( ran ( F ` x ) C_ RR /\ ran ( F ` x ) =/= (/) /\ E. y e. RR A. n e. ran ( F ` x ) n <_ y ) ) |
| 66 | 65 | adantr | |- ( ( x e. RR /\ k e. NN ) -> ( ran ( F ` x ) C_ RR /\ ran ( F ` x ) =/= (/) /\ E. y e. RR A. n e. ran ( F ` x ) n <_ y ) ) |
| 67 | suprub | |- ( ( ( ran ( F ` x ) C_ RR /\ ran ( F ` x ) =/= (/) /\ E. y e. RR A. n e. ran ( F ` x ) n <_ y ) /\ ( ( F ` x ) ` k ) e. ran ( F ` x ) ) -> ( ( F ` x ) ` k ) <_ sup ( ran ( F ` x ) , RR , < ) ) |
|
| 68 | 66 61 67 | syl2anc | |- ( ( x e. RR /\ k e. NN ) -> ( ( F ` x ) ` k ) <_ sup ( ran ( F ` x ) , RR , < ) ) |
| 69 | 62 63 64 68 | leadd1dd | |- ( ( x e. RR /\ k e. NN ) -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) <_ ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) ) |
| 70 | 62 64 | readdcld | |- ( ( x e. RR /\ k e. NN ) -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) e. RR ) |
| 71 | readdcl | |- ( ( sup ( ran ( F ` x ) , RR , < ) e. RR /\ ( 1 / k ) e. RR ) -> ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) e. RR ) |
|
| 72 | 30 53 71 | syl2an | |- ( ( x e. RR /\ k e. NN ) -> ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) e. RR ) |
| 73 | simpl | |- ( ( x e. RR /\ k e. NN ) -> x e. RR ) |
|
| 74 | lelttr | |- ( ( ( ( ( F ` x ) ` k ) + ( 1 / k ) ) e. RR /\ ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) e. RR /\ x e. RR ) -> ( ( ( ( ( F ` x ) ` k ) + ( 1 / k ) ) <_ ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) /\ ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) < x ) -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) |
|
| 75 | 74 | expd | |- ( ( ( ( ( F ` x ) ` k ) + ( 1 / k ) ) e. RR /\ ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) e. RR /\ x e. RR ) -> ( ( ( ( F ` x ) ` k ) + ( 1 / k ) ) <_ ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) -> ( ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) < x -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) ) |
| 76 | 70 72 73 75 | syl3anc | |- ( ( x e. RR /\ k e. NN ) -> ( ( ( ( F ` x ) ` k ) + ( 1 / k ) ) <_ ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) -> ( ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) < x -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) ) |
| 77 | 69 76 | mpd | |- ( ( x e. RR /\ k e. NN ) -> ( ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) < x -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) |
| 78 | 77 | adantlr | |- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) < x -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) |
| 79 | 56 78 | sylbird | |- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( ( 1 / k ) < ( x - sup ( ran ( F ` x ) , RR , < ) ) -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) |
| 80 | 51 79 | sylbid | |- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) |
| 81 | 42 | peano2zd | |- ( ( x e. RR /\ k e. NN ) -> ( sup ( T , RR , < ) + 1 ) e. ZZ ) |
| 82 | oveq1 | |- ( n = ( sup ( T , RR , < ) + 1 ) -> ( n / k ) = ( ( sup ( T , RR , < ) + 1 ) / k ) ) |
|
| 83 | 82 | breq1d | |- ( n = ( sup ( T , RR , < ) + 1 ) -> ( ( n / k ) < x <-> ( ( sup ( T , RR , < ) + 1 ) / k ) < x ) ) |
| 84 | 83 1 | elrab2 | |- ( ( sup ( T , RR , < ) + 1 ) e. T <-> ( ( sup ( T , RR , < ) + 1 ) e. ZZ /\ ( ( sup ( T , RR , < ) + 1 ) / k ) < x ) ) |
| 85 | 84 | biimpri | |- ( ( ( sup ( T , RR , < ) + 1 ) e. ZZ /\ ( ( sup ( T , RR , < ) + 1 ) / k ) < x ) -> ( sup ( T , RR , < ) + 1 ) e. T ) |
| 86 | 81 85 | sylan | |- ( ( ( x e. RR /\ k e. NN ) /\ ( ( sup ( T , RR , < ) + 1 ) / k ) < x ) -> ( sup ( T , RR , < ) + 1 ) e. T ) |
| 87 | ssrab2 | |- { n e. ZZ | ( n / k ) < x } C_ ZZ |
|
| 88 | 1 87 | eqsstri | |- T C_ ZZ |
| 89 | zssre | |- ZZ C_ RR |
|
| 90 | 88 89 | sstri | |- T C_ RR |
| 91 | 90 | a1i | |- ( ( x e. RR /\ k e. NN ) -> T C_ RR ) |
| 92 | remulcl | |- ( ( k e. RR /\ x e. RR ) -> ( k x. x ) e. RR ) |
|
| 93 | 92 | ancoms | |- ( ( x e. RR /\ k e. RR ) -> ( k x. x ) e. RR ) |
| 94 | 47 93 | sylan2 | |- ( ( x e. RR /\ k e. NN ) -> ( k x. x ) e. RR ) |
| 95 | btwnz | |- ( ( k x. x ) e. RR -> ( E. n e. ZZ n < ( k x. x ) /\ E. n e. ZZ ( k x. x ) < n ) ) |
|
| 96 | 95 | simpld | |- ( ( k x. x ) e. RR -> E. n e. ZZ n < ( k x. x ) ) |
| 97 | 94 96 | syl | |- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ n < ( k x. x ) ) |
| 98 | zre | |- ( n e. ZZ -> n e. RR ) |
|
| 99 | 98 | adantl | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> n e. RR ) |
| 100 | simpll | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> x e. RR ) |
|
| 101 | 49 | ad2antlr | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k e. RR /\ 0 < k ) ) |
| 102 | ltdivmul | |- ( ( n e. RR /\ x e. RR /\ ( k e. RR /\ 0 < k ) ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
|
| 103 | 99 100 101 102 | syl3anc | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
| 104 | 103 | rexbidva | |- ( ( x e. RR /\ k e. NN ) -> ( E. n e. ZZ ( n / k ) < x <-> E. n e. ZZ n < ( k x. x ) ) ) |
| 105 | 97 104 | mpbird | |- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ ( n / k ) < x ) |
| 106 | rabn0 | |- ( { n e. ZZ | ( n / k ) < x } =/= (/) <-> E. n e. ZZ ( n / k ) < x ) |
|
| 107 | 105 106 | sylibr | |- ( ( x e. RR /\ k e. NN ) -> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
| 108 | 1 | neeq1i | |- ( T =/= (/) <-> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
| 109 | 107 108 | sylibr | |- ( ( x e. RR /\ k e. NN ) -> T =/= (/) ) |
| 110 | 1 | reqabi | |- ( n e. T <-> ( n e. ZZ /\ ( n / k ) < x ) ) |
| 111 | 47 | ad2antlr | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> k e. RR ) |
| 112 | 111 100 92 | syl2anc | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k x. x ) e. RR ) |
| 113 | ltle | |- ( ( n e. RR /\ ( k x. x ) e. RR ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
|
| 114 | 99 112 113 | syl2anc | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
| 115 | 103 114 | sylbid | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x -> n <_ ( k x. x ) ) ) |
| 116 | 115 | impr | |- ( ( ( x e. RR /\ k e. NN ) /\ ( n e. ZZ /\ ( n / k ) < x ) ) -> n <_ ( k x. x ) ) |
| 117 | 110 116 | sylan2b | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. T ) -> n <_ ( k x. x ) ) |
| 118 | 117 | ralrimiva | |- ( ( x e. RR /\ k e. NN ) -> A. n e. T n <_ ( k x. x ) ) |
| 119 | breq2 | |- ( y = ( k x. x ) -> ( n <_ y <-> n <_ ( k x. x ) ) ) |
|
| 120 | 119 | ralbidv | |- ( y = ( k x. x ) -> ( A. n e. T n <_ y <-> A. n e. T n <_ ( k x. x ) ) ) |
| 121 | 120 | rspcev | |- ( ( ( k x. x ) e. RR /\ A. n e. T n <_ ( k x. x ) ) -> E. y e. RR A. n e. T n <_ y ) |
| 122 | 94 118 121 | syl2anc | |- ( ( x e. RR /\ k e. NN ) -> E. y e. RR A. n e. T n <_ y ) |
| 123 | 91 109 122 | 3jca | |- ( ( x e. RR /\ k e. NN ) -> ( T C_ RR /\ T =/= (/) /\ E. y e. RR A. n e. T n <_ y ) ) |
| 124 | suprub | |- ( ( ( T C_ RR /\ T =/= (/) /\ E. y e. RR A. n e. T n <_ y ) /\ ( sup ( T , RR , < ) + 1 ) e. T ) -> ( sup ( T , RR , < ) + 1 ) <_ sup ( T , RR , < ) ) |
|
| 125 | 123 124 | sylan | |- ( ( ( x e. RR /\ k e. NN ) /\ ( sup ( T , RR , < ) + 1 ) e. T ) -> ( sup ( T , RR , < ) + 1 ) <_ sup ( T , RR , < ) ) |
| 126 | 86 125 | syldan | |- ( ( ( x e. RR /\ k e. NN ) /\ ( ( sup ( T , RR , < ) + 1 ) / k ) < x ) -> ( sup ( T , RR , < ) + 1 ) <_ sup ( T , RR , < ) ) |
| 127 | 126 | ex | |- ( ( x e. RR /\ k e. NN ) -> ( ( ( sup ( T , RR , < ) + 1 ) / k ) < x -> ( sup ( T , RR , < ) + 1 ) <_ sup ( T , RR , < ) ) ) |
| 128 | 42 | zcnd | |- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. CC ) |
| 129 | 1cnd | |- ( ( x e. RR /\ k e. NN ) -> 1 e. CC ) |
|
| 130 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 131 | nnne0 | |- ( k e. NN -> k =/= 0 ) |
|
| 132 | 130 131 | jca | |- ( k e. NN -> ( k e. CC /\ k =/= 0 ) ) |
| 133 | 132 | adantl | |- ( ( x e. RR /\ k e. NN ) -> ( k e. CC /\ k =/= 0 ) ) |
| 134 | divdir | |- ( ( sup ( T , RR , < ) e. CC /\ 1 e. CC /\ ( k e. CC /\ k =/= 0 ) ) -> ( ( sup ( T , RR , < ) + 1 ) / k ) = ( ( sup ( T , RR , < ) / k ) + ( 1 / k ) ) ) |
|
| 135 | 128 129 133 134 | syl3anc | |- ( ( x e. RR /\ k e. NN ) -> ( ( sup ( T , RR , < ) + 1 ) / k ) = ( ( sup ( T , RR , < ) / k ) + ( 1 / k ) ) ) |
| 136 | 3 | mptex | |- ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. _V |
| 137 | 2 | fvmpt2 | |- ( ( x e. RR /\ ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. _V ) -> ( F ` x ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
| 138 | 136 137 | mpan2 | |- ( x e. RR -> ( F ` x ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
| 139 | 138 | fveq1d | |- ( x e. RR -> ( ( F ` x ) ` k ) = ( ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ` k ) ) |
| 140 | ovex | |- ( sup ( T , RR , < ) / k ) e. _V |
|
| 141 | eqid | |- ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) |
|
| 142 | 141 | fvmpt2 | |- ( ( k e. NN /\ ( sup ( T , RR , < ) / k ) e. _V ) -> ( ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ` k ) = ( sup ( T , RR , < ) / k ) ) |
| 143 | 140 142 | mpan2 | |- ( k e. NN -> ( ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ` k ) = ( sup ( T , RR , < ) / k ) ) |
| 144 | 139 143 | sylan9eq | |- ( ( x e. RR /\ k e. NN ) -> ( ( F ` x ) ` k ) = ( sup ( T , RR , < ) / k ) ) |
| 145 | 144 | oveq1d | |- ( ( x e. RR /\ k e. NN ) -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) = ( ( sup ( T , RR , < ) / k ) + ( 1 / k ) ) ) |
| 146 | 135 145 | eqtr4d | |- ( ( x e. RR /\ k e. NN ) -> ( ( sup ( T , RR , < ) + 1 ) / k ) = ( ( ( F ` x ) ` k ) + ( 1 / k ) ) ) |
| 147 | 146 | breq1d | |- ( ( x e. RR /\ k e. NN ) -> ( ( ( sup ( T , RR , < ) + 1 ) / k ) < x <-> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) |
| 148 | 81 | zred | |- ( ( x e. RR /\ k e. NN ) -> ( sup ( T , RR , < ) + 1 ) e. RR ) |
| 149 | 148 43 | lenltd | |- ( ( x e. RR /\ k e. NN ) -> ( ( sup ( T , RR , < ) + 1 ) <_ sup ( T , RR , < ) <-> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) |
| 150 | 127 147 149 | 3imtr3d | |- ( ( x e. RR /\ k e. NN ) -> ( ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x -> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) |
| 151 | 150 | adantlr | |- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x -> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) |
| 152 | 80 151 | syld | |- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k -> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) |
| 153 | 152 | exp31 | |- ( x e. RR -> ( sup ( ran ( F ` x ) , RR , < ) < x -> ( k e. NN -> ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k -> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
| 154 | 153 | com4l | |- ( sup ( ran ( F ` x ) , RR , < ) < x -> ( k e. NN -> ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k -> ( x e. RR -> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
| 155 | 154 | com14 | |- ( x e. RR -> ( k e. NN -> ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k -> ( sup ( ran ( F ` x ) , RR , < ) < x -> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
| 156 | 155 | 3imp | |- ( ( x e. RR /\ k e. NN /\ ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k ) -> ( sup ( ran ( F ` x ) , RR , < ) < x -> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) |
| 157 | 45 156 | mt2d | |- ( ( x e. RR /\ k e. NN /\ ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k ) -> -. sup ( ran ( F ` x ) , RR , < ) < x ) |
| 158 | 157 | rexlimdv3a | |- ( x e. RR -> ( E. k e. NN ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k -> -. sup ( ran ( F ` x ) , RR , < ) < x ) ) |
| 159 | 41 158 | syld | |- ( x e. RR -> ( sup ( ran ( F ` x ) , RR , < ) < x -> -. sup ( ran ( F ` x ) , RR , < ) < x ) ) |
| 160 | 159 | pm2.01d | |- ( x e. RR -> -. sup ( ran ( F ` x ) , RR , < ) < x ) |
| 161 | eqlelt | |- ( ( sup ( ran ( F ` x ) , RR , < ) e. RR /\ x e. RR ) -> ( sup ( ran ( F ` x ) , RR , < ) = x <-> ( sup ( ran ( F ` x ) , RR , < ) <_ x /\ -. sup ( ran ( F ` x ) , RR , < ) < x ) ) ) |
|
| 162 | 30 161 | mpancom | |- ( x e. RR -> ( sup ( ran ( F ` x ) , RR , < ) = x <-> ( sup ( ran ( F ` x ) , RR , < ) <_ x /\ -. sup ( ran ( F ` x ) , RR , < ) < x ) ) ) |
| 163 | 29 160 162 | mpbir2and | |- ( x e. RR -> sup ( ran ( F ` x ) , RR , < ) = x ) |