This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any real number can be sandwiched between two integers. Exercise 2 of Apostol p. 28. (Contributed by NM, 10-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | btwnz | ⊢ ( 𝐴 ∈ ℝ → ( ∃ 𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃ 𝑦 ∈ ℤ 𝐴 < 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 2 | arch | ⊢ ( - 𝐴 ∈ ℝ → ∃ 𝑧 ∈ ℕ - 𝐴 < 𝑧 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℝ → ∃ 𝑧 ∈ ℕ - 𝐴 < 𝑧 ) |
| 4 | nnre | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) | |
| 5 | ltnegcon1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( - 𝐴 < 𝑧 ↔ - 𝑧 < 𝐴 ) ) | |
| 6 | 5 | ex | ⊢ ( 𝐴 ∈ ℝ → ( 𝑧 ∈ ℝ → ( - 𝐴 < 𝑧 ↔ - 𝑧 < 𝐴 ) ) ) |
| 7 | 4 6 | syl5 | ⊢ ( 𝐴 ∈ ℝ → ( 𝑧 ∈ ℕ → ( - 𝐴 < 𝑧 ↔ - 𝑧 < 𝐴 ) ) ) |
| 8 | 7 | pm5.32d | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝑧 ∈ ℕ ∧ - 𝐴 < 𝑧 ) ↔ ( 𝑧 ∈ ℕ ∧ - 𝑧 < 𝐴 ) ) ) |
| 9 | nnnegz | ⊢ ( 𝑧 ∈ ℕ → - 𝑧 ∈ ℤ ) | |
| 10 | breq1 | ⊢ ( 𝑥 = - 𝑧 → ( 𝑥 < 𝐴 ↔ - 𝑧 < 𝐴 ) ) | |
| 11 | 10 | rspcev | ⊢ ( ( - 𝑧 ∈ ℤ ∧ - 𝑧 < 𝐴 ) → ∃ 𝑥 ∈ ℤ 𝑥 < 𝐴 ) |
| 12 | 9 11 | sylan | ⊢ ( ( 𝑧 ∈ ℕ ∧ - 𝑧 < 𝐴 ) → ∃ 𝑥 ∈ ℤ 𝑥 < 𝐴 ) |
| 13 | 8 12 | biimtrdi | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝑧 ∈ ℕ ∧ - 𝐴 < 𝑧 ) → ∃ 𝑥 ∈ ℤ 𝑥 < 𝐴 ) ) |
| 14 | 13 | expd | ⊢ ( 𝐴 ∈ ℝ → ( 𝑧 ∈ ℕ → ( - 𝐴 < 𝑧 → ∃ 𝑥 ∈ ℤ 𝑥 < 𝐴 ) ) ) |
| 15 | 14 | rexlimdv | ⊢ ( 𝐴 ∈ ℝ → ( ∃ 𝑧 ∈ ℕ - 𝐴 < 𝑧 → ∃ 𝑥 ∈ ℤ 𝑥 < 𝐴 ) ) |
| 16 | 3 15 | mpd | ⊢ ( 𝐴 ∈ ℝ → ∃ 𝑥 ∈ ℤ 𝑥 < 𝐴 ) |
| 17 | arch | ⊢ ( 𝐴 ∈ ℝ → ∃ 𝑦 ∈ ℕ 𝐴 < 𝑦 ) | |
| 18 | nnz | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) | |
| 19 | 18 | anim1i | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐴 < 𝑦 ) → ( 𝑦 ∈ ℤ ∧ 𝐴 < 𝑦 ) ) |
| 20 | 19 | reximi2 | ⊢ ( ∃ 𝑦 ∈ ℕ 𝐴 < 𝑦 → ∃ 𝑦 ∈ ℤ 𝐴 < 𝑦 ) |
| 21 | 17 20 | syl | ⊢ ( 𝐴 ∈ ℝ → ∃ 𝑦 ∈ ℤ 𝐴 < 𝑦 ) |
| 22 | 16 21 | jca | ⊢ ( 𝐴 ∈ ℝ → ( ∃ 𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃ 𝑦 ∈ ℤ 𝐴 < 𝑦 ) ) |