This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of division over addition. (Contributed by NM, 31-Jul-2004) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divdir | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 + 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐴 ∈ ℂ ) | |
| 2 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐵 ∈ ℂ ) | |
| 3 | reccl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 1 / 𝐶 ) ∈ ℂ ) | |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 1 / 𝐶 ) ∈ ℂ ) |
| 5 | 1 2 4 | adddird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 + 𝐵 ) · ( 1 / 𝐶 ) ) = ( ( 𝐴 · ( 1 / 𝐶 ) ) + ( 𝐵 · ( 1 / 𝐶 ) ) ) ) |
| 6 | 1 2 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 7 | simp3l | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐶 ∈ ℂ ) | |
| 8 | simp3r | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐶 ≠ 0 ) | |
| 9 | divrec | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( ( 𝐴 + 𝐵 ) / 𝐶 ) = ( ( 𝐴 + 𝐵 ) · ( 1 / 𝐶 ) ) ) | |
| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 + 𝐵 ) / 𝐶 ) = ( ( 𝐴 + 𝐵 ) · ( 1 / 𝐶 ) ) ) |
| 11 | divrec | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐴 / 𝐶 ) = ( 𝐴 · ( 1 / 𝐶 ) ) ) | |
| 12 | 1 7 8 11 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 / 𝐶 ) = ( 𝐴 · ( 1 / 𝐶 ) ) ) |
| 13 | divrec | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) ) | |
| 14 | 2 7 8 13 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) ) |
| 15 | 12 14 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) = ( ( 𝐴 · ( 1 / 𝐶 ) ) + ( 𝐵 · ( 1 / 𝐶 ) ) ) ) |
| 16 | 5 10 15 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 + 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ) |