This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpnnen1lem.1 | ⊢ 𝑇 = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } | |
| rpnnen1lem.2 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) | ||
| rpnnen1lem.n | ⊢ ℕ ∈ V | ||
| rpnnen1lem.q | ⊢ ℚ ∈ V | ||
| Assertion | rpnnen1lem4 | ⊢ ( 𝑥 ∈ ℝ → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen1lem.1 | ⊢ 𝑇 = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } | |
| 2 | rpnnen1lem.2 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) | |
| 3 | rpnnen1lem.n | ⊢ ℕ ∈ V | |
| 4 | rpnnen1lem.q | ⊢ ℚ ∈ V | |
| 5 | 1 2 3 4 | rpnnen1lem1 | ⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) ∈ ( ℚ ↑m ℕ ) ) |
| 6 | 4 3 | elmap | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℚ ↑m ℕ ) ↔ ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ ) |
| 7 | 5 6 | sylib | ⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ ) |
| 8 | frn | ⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ran ( 𝐹 ‘ 𝑥 ) ⊆ ℚ ) | |
| 9 | qssre | ⊢ ℚ ⊆ ℝ | |
| 10 | 8 9 | sstrdi | ⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ) |
| 11 | 7 10 | syl | ⊢ ( 𝑥 ∈ ℝ → ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ) |
| 12 | 1nn | ⊢ 1 ∈ ℕ | |
| 13 | 12 | ne0ii | ⊢ ℕ ≠ ∅ |
| 14 | fdm | ⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → dom ( 𝐹 ‘ 𝑥 ) = ℕ ) | |
| 15 | 14 | neeq1d | ⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ( dom ( 𝐹 ‘ 𝑥 ) ≠ ∅ ↔ ℕ ≠ ∅ ) ) |
| 16 | 13 15 | mpbiri | ⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → dom ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
| 17 | dm0rn0 | ⊢ ( dom ( 𝐹 ‘ 𝑥 ) = ∅ ↔ ran ( 𝐹 ‘ 𝑥 ) = ∅ ) | |
| 18 | 17 | necon3bii | ⊢ ( dom ( 𝐹 ‘ 𝑥 ) ≠ ∅ ↔ ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
| 19 | 16 18 | sylib | ⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
| 20 | 7 19 | syl | ⊢ ( 𝑥 ∈ ℝ → ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
| 21 | 1 2 3 4 | rpnnen1lem3 | ⊢ ( 𝑥 ∈ ℝ → ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) |
| 22 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑛 ≤ 𝑦 ↔ 𝑛 ≤ 𝑥 ) ) | |
| 23 | 22 | ralbidv | ⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ↔ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) ) |
| 24 | 23 | rspcev | ⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) |
| 25 | 21 24 | mpdan | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) |
| 26 | suprcl | ⊢ ( ( ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ∧ ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ) | |
| 27 | 11 20 25 26 | syl3anc | ⊢ ( 𝑥 ∈ ℝ → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ) |