This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One half of rpnnen , where we show an injection from the real numbers to sequences of rational numbers. Specifically, we map a real number x to the sequence ( Fx ) : NN --> QQ (see rpnnen1lem6 ) such that ( ( Fx )k ) is the largest rational number with denominator k that is strictly less than x . In this manner, we get a monotonically increasing sequence that converges to x , and since each sequence converges to a unique real number, this mapping from reals to sequences of rational numbers is injective. Note: The NN and QQ existence hypotheses provide for use with either nnex and qex , or nnexALT and qexALT . The proof should not be modified to use any of those 4 theorems. (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 16-Jun-2013) (Revised by NM, 15-Aug-2021) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpnnen1.n | ⊢ ℕ ∈ V | |
| rpnnen1.q | ⊢ ℚ ∈ V | ||
| Assertion | rpnnen1 | ⊢ ℝ ≼ ( ℚ ↑m ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen1.n | ⊢ ℕ ∈ V | |
| 2 | rpnnen1.q | ⊢ ℚ ∈ V | |
| 3 | oveq1 | ⊢ ( 𝑚 = 𝑛 → ( 𝑚 / 𝑘 ) = ( 𝑛 / 𝑘 ) ) | |
| 4 | 3 | breq1d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 / 𝑘 ) < 𝑥 ↔ ( 𝑛 / 𝑘 ) < 𝑥 ) ) |
| 5 | 4 | cbvrabv | ⊢ { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑥 } = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } |
| 6 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝑚 / 𝑗 ) = ( 𝑚 / 𝑘 ) ) | |
| 7 | 6 | breq1d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑚 / 𝑗 ) < 𝑦 ↔ ( 𝑚 / 𝑘 ) < 𝑦 ) ) |
| 8 | 7 | rabbidv | ⊢ ( 𝑗 = 𝑘 → { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑗 ) < 𝑦 } = { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } ) |
| 9 | 8 | supeq1d | ⊢ ( 𝑗 = 𝑘 → sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑗 ) < 𝑦 } , ℝ , < ) = sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } , ℝ , < ) ) |
| 10 | id | ⊢ ( 𝑗 = 𝑘 → 𝑗 = 𝑘 ) | |
| 11 | 9 10 | oveq12d | ⊢ ( 𝑗 = 𝑘 → ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑗 ) < 𝑦 } , ℝ , < ) / 𝑗 ) = ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } , ℝ , < ) / 𝑘 ) ) |
| 12 | 11 | cbvmptv | ⊢ ( 𝑗 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑗 ) < 𝑦 } , ℝ , < ) / 𝑗 ) ) = ( 𝑘 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } , ℝ , < ) / 𝑘 ) ) |
| 13 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑚 / 𝑘 ) < 𝑦 ↔ ( 𝑚 / 𝑘 ) < 𝑥 ) ) | |
| 14 | 13 | rabbidv | ⊢ ( 𝑦 = 𝑥 → { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } = { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑥 } ) |
| 15 | 14 | supeq1d | ⊢ ( 𝑦 = 𝑥 → sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } , ℝ , < ) = sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑥 } , ℝ , < ) ) |
| 16 | 15 | oveq1d | ⊢ ( 𝑦 = 𝑥 → ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } , ℝ , < ) / 𝑘 ) = ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑥 } , ℝ , < ) / 𝑘 ) ) |
| 17 | 16 | mpteq2dv | ⊢ ( 𝑦 = 𝑥 → ( 𝑘 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } , ℝ , < ) / 𝑘 ) ) = ( 𝑘 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑥 } , ℝ , < ) / 𝑘 ) ) ) |
| 18 | 12 17 | eqtrid | ⊢ ( 𝑦 = 𝑥 → ( 𝑗 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑗 ) < 𝑦 } , ℝ , < ) / 𝑗 ) ) = ( 𝑘 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑥 } , ℝ , < ) / 𝑘 ) ) ) |
| 19 | 18 | cbvmptv | ⊢ ( 𝑦 ∈ ℝ ↦ ( 𝑗 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑗 ) < 𝑦 } , ℝ , < ) / 𝑗 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑥 } , ℝ , < ) / 𝑘 ) ) ) |
| 20 | 5 19 1 2 | rpnnen1lem6 | ⊢ ℝ ≼ ( ℚ ↑m ℕ ) |