This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for radcnvlt1 , radcnvle . If X is a point closer to zero than Y and the power series converges at Y , then it converges absolutely at X , even if the terms in the sequence are multiplied by n . (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| psergf.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | ||
| radcnvlem2.y | ⊢ ( 𝜑 → 𝑌 ∈ ℂ ) | ||
| radcnvlem2.a | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < ( abs ‘ 𝑌 ) ) | ||
| radcnvlem2.c | ⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 ‘ 𝑌 ) ) ∈ dom ⇝ ) | ||
| radcnvlem1.h | ⊢ 𝐻 = ( 𝑚 ∈ ℕ0 ↦ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) | ||
| Assertion | radcnvlem1 | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 3 | psergf.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| 4 | radcnvlem2.y | ⊢ ( 𝜑 → 𝑌 ∈ ℂ ) | |
| 5 | radcnvlem2.a | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < ( abs ‘ 𝑌 ) ) | |
| 6 | radcnvlem2.c | ⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 ‘ 𝑌 ) ) ∈ dom ⇝ ) | |
| 7 | radcnvlem1.h | ⊢ 𝐻 = ( 𝑚 ∈ ℕ0 ↦ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) | |
| 8 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 9 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 10 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 12 | 1 | pserval2 | ⊢ ( ( 𝑌 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑌 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) |
| 13 | 4 12 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑌 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) |
| 14 | fvexd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ∈ V ) | |
| 15 | 1 2 4 | psergf | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) : ℕ0 ⟶ ℂ ) |
| 16 | 15 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑌 ) ‘ 𝑘 ) ∈ ℂ ) |
| 17 | 8 9 14 6 16 | serf0 | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ⇝ 0 ) |
| 18 | 8 9 11 13 17 | climi0 | ⊢ ( 𝜑 → ∃ 𝑗 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) |
| 19 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → 𝑗 ∈ ℕ0 ) | |
| 20 | nn0re | ⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℝ ) | |
| 21 | 20 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℝ ) |
| 22 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → 𝑋 ∈ ℂ ) |
| 23 | 22 | abscld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 24 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → 𝑌 ∈ ℂ ) |
| 25 | 24 | abscld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ( abs ‘ 𝑌 ) ∈ ℝ ) |
| 26 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 27 | 3 | abscld | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 28 | 4 | abscld | ⊢ ( 𝜑 → ( abs ‘ 𝑌 ) ∈ ℝ ) |
| 29 | 3 | absge0d | ⊢ ( 𝜑 → 0 ≤ ( abs ‘ 𝑋 ) ) |
| 30 | 26 27 28 29 5 | lelttrd | ⊢ ( 𝜑 → 0 < ( abs ‘ 𝑌 ) ) |
| 31 | 30 | gt0ne0d | ⊢ ( 𝜑 → ( abs ‘ 𝑌 ) ≠ 0 ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ( abs ‘ 𝑌 ) ≠ 0 ) |
| 33 | 23 25 32 | redivcld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ∈ ℝ ) |
| 34 | reexpcl | ⊢ ( ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ∈ ℝ ∧ 𝑖 ∈ ℕ0 ) → ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ∈ ℝ ) | |
| 35 | 33 34 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ∈ ℝ ) |
| 36 | 21 35 | remulcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ∈ ℝ ) |
| 37 | eqid | ⊢ ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) | |
| 38 | 36 37 | fmptd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) : ℕ0 ⟶ ℝ ) |
| 39 | 38 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 40 | nn0re | ⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℝ ) | |
| 41 | 40 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℝ ) |
| 42 | 1 2 3 | psergf | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ) |
| 43 | 42 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ∈ ℂ ) |
| 44 | 43 | abscld | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ∈ ℝ ) |
| 45 | 41 44 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ∈ ℝ ) |
| 46 | 45 7 | fmptd | ⊢ ( 𝜑 → 𝐻 : ℕ0 ⟶ ℝ ) |
| 47 | 46 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → 𝐻 : ℕ0 ⟶ ℝ ) |
| 48 | 47 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑚 ) ∈ ℝ ) |
| 49 | 48 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑚 ) ∈ ℂ ) |
| 50 | 27 28 31 | redivcld | ⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ∈ ℝ ) |
| 51 | 50 | recnd | ⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ∈ ℂ ) |
| 52 | divge0 | ⊢ ( ( ( ( abs ‘ 𝑋 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑋 ) ) ∧ ( ( abs ‘ 𝑌 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝑌 ) ) ) → 0 ≤ ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ) | |
| 53 | 27 29 28 30 52 | syl22anc | ⊢ ( 𝜑 → 0 ≤ ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ) |
| 54 | 50 53 | absidd | ⊢ ( 𝜑 → ( abs ‘ ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ) = ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ) |
| 55 | 28 | recnd | ⊢ ( 𝜑 → ( abs ‘ 𝑌 ) ∈ ℂ ) |
| 56 | 55 | mulridd | ⊢ ( 𝜑 → ( ( abs ‘ 𝑌 ) · 1 ) = ( abs ‘ 𝑌 ) ) |
| 57 | 5 56 | breqtrrd | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < ( ( abs ‘ 𝑌 ) · 1 ) ) |
| 58 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 59 | ltdivmul | ⊢ ( ( ( abs ‘ 𝑋 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( abs ‘ 𝑌 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝑌 ) ) ) → ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) < 1 ↔ ( abs ‘ 𝑋 ) < ( ( abs ‘ 𝑌 ) · 1 ) ) ) | |
| 60 | 27 58 28 30 59 | syl112anc | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) < 1 ↔ ( abs ‘ 𝑋 ) < ( ( abs ‘ 𝑌 ) · 1 ) ) ) |
| 61 | 57 60 | mpbird | ⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) < 1 ) |
| 62 | 54 61 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ) < 1 ) |
| 63 | 37 | geomulcvg | ⊢ ( ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ∈ ℂ ∧ ( abs ‘ ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ) < 1 ) → seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ) ∈ dom ⇝ ) |
| 64 | 51 62 63 | syl2anc | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ) ∈ dom ⇝ ) |
| 65 | 64 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ) ∈ dom ⇝ ) |
| 66 | 1red | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → 1 ∈ ℝ ) | |
| 67 | 42 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ) |
| 68 | eluznn0 | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℕ0 ) | |
| 69 | 19 68 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℕ0 ) |
| 70 | 67 69 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ∈ ℂ ) |
| 71 | 70 | abscld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ∈ ℝ ) |
| 72 | 33 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ∈ ℝ ) |
| 73 | 72 69 | reexpcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ∈ ℝ ) |
| 74 | 69 | nn0red | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℝ ) |
| 75 | 69 | nn0ge0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 ≤ 𝑚 ) |
| 76 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 77 | 76 69 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 78 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑌 ∈ ℂ ) |
| 79 | 78 69 | expcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑌 ↑ 𝑚 ) ∈ ℂ ) |
| 80 | 77 79 | mulcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ∈ ℂ ) |
| 81 | 80 | abscld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) ∈ ℝ ) |
| 82 | 1red | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 1 ∈ ℝ ) | |
| 83 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑋 ∈ ℂ ) |
| 84 | 83 | abscld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 85 | 84 69 | reexpcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ∈ ℝ ) |
| 86 | 83 | absge0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 ≤ ( abs ‘ 𝑋 ) ) |
| 87 | 84 69 86 | expge0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 ≤ ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) |
| 88 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) | |
| 89 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑚 ) ) | |
| 90 | oveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝑌 ↑ 𝑘 ) = ( 𝑌 ↑ 𝑚 ) ) | |
| 91 | 89 90 | oveq12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) |
| 92 | 91 | fveq2d | ⊢ ( 𝑘 = 𝑚 → ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) = ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) ) |
| 93 | 92 | breq1d | ⊢ ( 𝑘 = 𝑚 → ( ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ↔ ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) < 1 ) ) |
| 94 | 93 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) < 1 ) |
| 95 | 88 94 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) < 1 ) |
| 96 | 1re | ⊢ 1 ∈ ℝ | |
| 97 | ltle | ⊢ ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) < 1 → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) ≤ 1 ) ) | |
| 98 | 81 96 97 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) < 1 → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) ≤ 1 ) ) |
| 99 | 95 98 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) ≤ 1 ) |
| 100 | 81 82 85 87 99 | lemul1ad | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) ≤ ( 1 · ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) ) |
| 101 | 83 69 | expcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑋 ↑ 𝑚 ) ∈ ℂ ) |
| 102 | 77 101 | mulcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ∈ ℂ ) |
| 103 | 102 79 | absmuld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) · ( 𝑌 ↑ 𝑚 ) ) ) = ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) · ( abs ‘ ( 𝑌 ↑ 𝑚 ) ) ) ) |
| 104 | 80 101 | absmuld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) · ( 𝑋 ↑ 𝑚 ) ) ) = ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) · ( abs ‘ ( 𝑋 ↑ 𝑚 ) ) ) ) |
| 105 | 77 79 101 | mul32d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) · ( 𝑋 ↑ 𝑚 ) ) = ( ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) · ( 𝑌 ↑ 𝑚 ) ) ) |
| 106 | 105 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) · ( 𝑋 ↑ 𝑚 ) ) ) = ( abs ‘ ( ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) · ( 𝑌 ↑ 𝑚 ) ) ) ) |
| 107 | 83 69 | absexpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝑋 ↑ 𝑚 ) ) = ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) |
| 108 | 107 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) · ( abs ‘ ( 𝑋 ↑ 𝑚 ) ) ) = ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) ) |
| 109 | 104 106 108 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) · ( 𝑌 ↑ 𝑚 ) ) ) = ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) ) |
| 110 | 78 69 | absexpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝑌 ↑ 𝑚 ) ) = ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) |
| 111 | 110 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) · ( abs ‘ ( 𝑌 ↑ 𝑚 ) ) ) = ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ) |
| 112 | 103 109 111 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) = ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ) |
| 113 | 85 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ∈ ℂ ) |
| 114 | 113 | mullidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 · ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) = ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) |
| 115 | 100 112 114 | 3brtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ≤ ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) |
| 116 | 102 | abscld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ∈ ℝ ) |
| 117 | 25 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ 𝑌 ) ∈ ℝ ) |
| 118 | 117 69 | reexpcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ∈ ℝ ) |
| 119 | eluzelz | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑚 ∈ ℤ ) | |
| 120 | 119 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℤ ) |
| 121 | 30 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 < ( abs ‘ 𝑌 ) ) |
| 122 | expgt0 | ⊢ ( ( ( abs ‘ 𝑌 ) ∈ ℝ ∧ 𝑚 ∈ ℤ ∧ 0 < ( abs ‘ 𝑌 ) ) → 0 < ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) | |
| 123 | 117 120 121 122 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 < ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) |
| 124 | lemuldiv | ⊢ ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ∈ ℝ ∧ ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ∈ ℝ ∧ ( ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ∈ ℝ ∧ 0 < ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ) → ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ≤ ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ↔ ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ≤ ( ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) / ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ) ) | |
| 125 | 116 85 118 123 124 | syl112anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ≤ ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ↔ ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ≤ ( ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) / ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ) ) |
| 126 | 115 125 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ≤ ( ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) / ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ) |
| 127 | 1 | pserval2 | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) = ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) |
| 128 | 83 69 127 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) = ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) |
| 129 | 128 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) = ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ) |
| 130 | 23 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 131 | 130 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 132 | 25 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ( abs ‘ 𝑌 ) ∈ ℂ ) |
| 133 | 132 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ 𝑌 ) ∈ ℂ ) |
| 134 | 31 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ 𝑌 ) ≠ 0 ) |
| 135 | 131 133 134 69 | expdivd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) = ( ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) / ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ) |
| 136 | 126 129 135 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ≤ ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) |
| 137 | 71 73 74 75 136 | lemul2ad | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ≤ ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) |
| 138 | 74 71 | remulcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ∈ ℝ ) |
| 139 | 70 | absge0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 ≤ ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) |
| 140 | 74 71 75 139 | mulge0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 ≤ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) |
| 141 | 138 140 | absidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) = ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) |
| 142 | 74 73 | remulcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ∈ ℝ ) |
| 143 | 142 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ∈ ℂ ) |
| 144 | 143 | mullidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 · ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) = ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) |
| 145 | 137 141 144 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) ≤ ( 1 · ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) ) |
| 146 | ovex | ⊢ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ∈ V | |
| 147 | 7 | fvmpt2 | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ∈ V ) → ( 𝐻 ‘ 𝑚 ) = ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) |
| 148 | 69 146 147 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐻 ‘ 𝑚 ) = ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) |
| 149 | 148 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝐻 ‘ 𝑚 ) ) = ( abs ‘ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) ) |
| 150 | id | ⊢ ( 𝑖 = 𝑚 → 𝑖 = 𝑚 ) | |
| 151 | oveq2 | ⊢ ( 𝑖 = 𝑚 → ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) = ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) | |
| 152 | 150 151 | oveq12d | ⊢ ( 𝑖 = 𝑚 → ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) = ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) |
| 153 | ovex | ⊢ ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ∈ V | |
| 154 | 152 37 153 | fvmpt | ⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ‘ 𝑚 ) = ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) |
| 155 | 69 154 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ‘ 𝑚 ) = ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) |
| 156 | 155 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 · ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ‘ 𝑚 ) ) = ( 1 · ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) ) |
| 157 | 145 149 156 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝐻 ‘ 𝑚 ) ) ≤ ( 1 · ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ‘ 𝑚 ) ) ) |
| 158 | 8 19 39 49 65 66 157 | cvgcmpce | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → seq 0 ( + , 𝐻 ) ∈ dom ⇝ ) |
| 159 | 18 158 | rexlimddv | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ∈ dom ⇝ ) |