This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climi.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climi.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climi.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| climi.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | ||
| climi0.5 | ⊢ ( 𝜑 → 𝐹 ⇝ 0 ) | ||
| Assertion | climi0 | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 ) < 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climi.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climi.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climi.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 4 | climi.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | |
| 5 | climi0.5 | ⊢ ( 𝜑 → 𝐹 ⇝ 0 ) | |
| 6 | 1 2 3 4 5 | climi | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝐶 ) ) |
| 7 | subid1 | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 − 0 ) = 𝐵 ) | |
| 8 | 7 | fveq2d | ⊢ ( 𝐵 ∈ ℂ → ( abs ‘ ( 𝐵 − 0 ) ) = ( abs ‘ 𝐵 ) ) |
| 9 | 8 | breq1d | ⊢ ( 𝐵 ∈ ℂ → ( ( abs ‘ ( 𝐵 − 0 ) ) < 𝐶 ↔ ( abs ‘ 𝐵 ) < 𝐶 ) ) |
| 10 | 9 | biimpa | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝐶 ) → ( abs ‘ 𝐵 ) < 𝐶 ) |
| 11 | 10 | ralimi | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝐶 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 ) < 𝐶 ) |
| 12 | 11 | reximi | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝐶 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 ) < 𝐶 ) |
| 13 | 6 12 | syl | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 ) < 𝐶 ) |