This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005) (Revised by Mario Carneiro, 16-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caucvgb.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| serf0.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| serf0.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| serf0.4 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| serf0.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| Assertion | serf0 | ⊢ ( 𝜑 → 𝐹 ⇝ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgb.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | serf0.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | serf0.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 4 | serf0.4 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 5 | serf0.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 6 | 1 | caucvgb | ⊢ ( ( 𝑀 ∈ ℤ ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 7 | 2 4 6 | syl2anc | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 8 | 4 7 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 9 | 1 | cau3 | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ∈ ℂ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 10 | 8 9 | sylib | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ∈ ℂ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) < 𝑥 ) ) |
| 11 | 1 | peano2uzs | ⊢ ( 𝑗 ∈ 𝑍 → ( 𝑗 + 1 ) ∈ 𝑍 ) |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑗 + 1 ) ∈ 𝑍 ) |
| 13 | eluzelz | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑚 ∈ ℤ ) | |
| 14 | uzid | ⊢ ( 𝑚 ∈ ℤ → 𝑚 ∈ ( ℤ≥ ‘ 𝑚 ) ) | |
| 15 | peano2uz | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑚 ) → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 𝑚 ) ) | |
| 16 | fveq2 | ⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) ) |
| 18 | 17 | fveq2d | ⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) = ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 19 | 18 | breq1d | ⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) ) < 𝑥 ) ) |
| 20 | 19 | rspcv | ⊢ ( ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 𝑚 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) ) < 𝑥 ) ) |
| 21 | 13 14 15 20 | 4syl | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) ) < 𝑥 ) ) |
| 22 | 21 | adantld | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ∈ ℂ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) < 𝑥 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) ) < 𝑥 ) ) |
| 23 | 22 | ralimia | ⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ∈ ℂ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) < 𝑥 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) ) < 𝑥 ) |
| 24 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) | |
| 25 | 24 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 26 | eluzelz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ℤ ) |
| 28 | eluzp1m1 | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( 𝑘 − 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 29 | 27 28 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( 𝑘 − 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 30 | fveq2 | ⊢ ( 𝑚 = ( 𝑘 − 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) ) | |
| 31 | fvoveq1 | ⊢ ( 𝑚 = ( 𝑘 − 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) | |
| 32 | 30 31 | oveq12d | ⊢ ( 𝑚 = ( 𝑘 − 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) ) |
| 33 | 32 | fveq2d | ⊢ ( 𝑚 = ( 𝑘 − 1 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) ) = ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) ) ) |
| 34 | 33 | breq1d | ⊢ ( 𝑚 = ( 𝑘 − 1 ) → ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) ) < 𝑥 ↔ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) ) < 𝑥 ) ) |
| 35 | 34 | rspcv | ⊢ ( ( 𝑘 − 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) ) < 𝑥 ) ) |
| 36 | 29 35 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) ) < 𝑥 ) ) |
| 37 | 1 2 5 | serf | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ) |
| 38 | 37 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ) |
| 39 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ ( 𝑘 − 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑘 − 1 ) ∈ 𝑍 ) |
| 40 | 24 29 39 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( 𝑘 − 1 ) ∈ 𝑍 ) |
| 41 | 38 40 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 42 | 1 | uztrn2 | ⊢ ( ( ( 𝑗 + 1 ) ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 43 | 12 42 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 44 | 38 43 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ∈ ℂ ) |
| 45 | 41 44 | abssubd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) = ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) ) ) ) |
| 46 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) → 𝑘 ∈ ℤ ) | |
| 47 | 46 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 48 | 47 | zcnd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ℂ ) |
| 49 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 50 | npcan | ⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) | |
| 51 | 48 49 50 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
| 52 | 51 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑘 − 1 ) + 1 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) |
| 53 | 52 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) |
| 54 | 53 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) ) = ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) |
| 55 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 56 | eluzp1p1 | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) | |
| 57 | 25 56 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 58 | eqid | ⊢ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) = ( ℤ≥ ‘ ( 𝑀 + 1 ) ) | |
| 59 | 58 | uztrn2 | ⊢ ( ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 60 | 57 59 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 61 | seqm1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) + ( 𝐹 ‘ 𝑘 ) ) ) | |
| 62 | 55 60 61 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) + ( 𝐹 ‘ 𝑘 ) ) ) |
| 63 | 62 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) + ( 𝐹 ‘ 𝑘 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) ) ) |
| 64 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 65 | 43 64 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 66 | 41 65 | pncan2d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) + ( 𝐹 ‘ 𝑘 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 67 | 63 66 | eqtr2d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) ) ) |
| 68 | 67 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) ) ) ) |
| 69 | 45 54 68 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 70 | 69 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 − 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) ) < 𝑥 ↔ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 71 | 36 70 | sylibd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) ) < 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 72 | 71 | ralrimdva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) ) < 𝑥 → ∀ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 73 | 23 72 | syl5 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ∈ ℂ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) < 𝑥 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 74 | fveq2 | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) | |
| 75 | 74 | raleqdv | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 76 | 75 | rspcev | ⊢ ( ( ( 𝑗 + 1 ) ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) → ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) |
| 77 | 12 73 76 | syl6an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ∈ ℂ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) < 𝑥 ) → ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 78 | 77 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ∈ ℂ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) < 𝑥 ) → ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 79 | 78 | ralimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ∈ ℂ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 80 | 10 79 | mpd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) |
| 81 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 82 | 1 2 3 81 5 | clim0c | ⊢ ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 83 | 80 82 | mpbird | ⊢ ( 𝜑 → 𝐹 ⇝ 0 ) |