This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The geometric series converges even if it is multiplied by k to result in the larger series k x. A ^ k . (Contributed by Mario Carneiro, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | geomulcvg.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℕ0 ↦ ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) ) | |
| Assertion | geomulcvg | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | geomulcvg.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℕ0 ↦ ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) ) | |
| 2 | elnn0 | ⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) | |
| 3 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → 𝐴 = 0 ) | |
| 4 | 3 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → ( 𝐴 ↑ 𝑘 ) = ( 0 ↑ 𝑘 ) ) |
| 5 | 0exp | ⊢ ( 𝑘 ∈ ℕ → ( 0 ↑ 𝑘 ) = 0 ) | |
| 6 | 4 5 | sylan9eq | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) = 0 ) |
| 7 | 6 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) = ( 𝑘 · 0 ) ) |
| 8 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 9 | 8 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 10 | 9 | mul01d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · 0 ) = 0 ) |
| 11 | 7 10 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) = 0 ) |
| 12 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 = 0 ) → 𝑘 = 0 ) | |
| 13 | 12 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 = 0 ) → ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) = ( 0 · ( 𝐴 ↑ 𝑘 ) ) ) |
| 14 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 = 0 ) → 𝐴 ∈ ℂ ) | |
| 15 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 16 | 12 15 | eqeltrdi | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 = 0 ) → 𝑘 ∈ ℕ0 ) |
| 17 | 14 16 | expcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 = 0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 18 | 17 | mul02d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 = 0 ) → ( 0 · ( 𝐴 ↑ 𝑘 ) ) = 0 ) |
| 19 | 13 18 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 = 0 ) → ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) = 0 ) |
| 20 | 11 19 | jaodan | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) → ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) = 0 ) |
| 21 | 2 20 | sylan2b | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) = 0 ) |
| 22 | 21 | mpteq2dva | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ 0 ) ) |
| 23 | 1 22 | eqtrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → 𝐹 = ( 𝑘 ∈ ℕ0 ↦ 0 ) ) |
| 24 | fconstmpt | ⊢ ( ℕ0 × { 0 } ) = ( 𝑘 ∈ ℕ0 ↦ 0 ) | |
| 25 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 26 | 25 | xpeq1i | ⊢ ( ℕ0 × { 0 } ) = ( ( ℤ≥ ‘ 0 ) × { 0 } ) |
| 27 | 24 26 | eqtr3i | ⊢ ( 𝑘 ∈ ℕ0 ↦ 0 ) = ( ( ℤ≥ ‘ 0 ) × { 0 } ) |
| 28 | 23 27 | eqtrdi | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → 𝐹 = ( ( ℤ≥ ‘ 0 ) × { 0 } ) ) |
| 29 | 28 | seqeq3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → seq 0 ( + , 𝐹 ) = seq 0 ( + , ( ( ℤ≥ ‘ 0 ) × { 0 } ) ) ) |
| 30 | 0z | ⊢ 0 ∈ ℤ | |
| 31 | serclim0 | ⊢ ( 0 ∈ ℤ → seq 0 ( + , ( ( ℤ≥ ‘ 0 ) × { 0 } ) ) ⇝ 0 ) | |
| 32 | 30 31 | ax-mp | ⊢ seq 0 ( + , ( ( ℤ≥ ‘ 0 ) × { 0 } ) ) ⇝ 0 |
| 33 | 29 32 | eqbrtrdi | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → seq 0 ( + , 𝐹 ) ⇝ 0 ) |
| 34 | seqex | ⊢ seq 0 ( + , 𝐹 ) ∈ V | |
| 35 | c0ex | ⊢ 0 ∈ V | |
| 36 | 34 35 | breldm | ⊢ ( seq 0 ( + , 𝐹 ) ⇝ 0 → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 37 | 33 36 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 38 | 1red | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → 1 ∈ ℝ ) | |
| 39 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 40 | 39 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 41 | peano2re | ⊢ ( ( abs ‘ 𝐴 ) ∈ ℝ → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ) | |
| 42 | 40 41 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 43 | 42 | rehalfcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ∈ ℝ ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ∈ ℝ ) |
| 45 | absrpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) | |
| 46 | 45 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 47 | 44 46 | rerpdivcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 48 | 40 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 49 | 48 | mullidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 1 · ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 50 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) < 1 ) | |
| 51 | 1re | ⊢ 1 ∈ ℝ | |
| 52 | avglt1 | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) < 1 ↔ ( abs ‘ 𝐴 ) < ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) ) | |
| 53 | 40 51 52 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( abs ‘ 𝐴 ) < 1 ↔ ( abs ‘ 𝐴 ) < ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) ) |
| 54 | 50 53 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) < ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) |
| 55 | 49 54 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 1 · ( abs ‘ 𝐴 ) ) < ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) |
| 56 | 55 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ( 1 · ( abs ‘ 𝐴 ) ) < ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) |
| 57 | 38 44 46 | ltmuldivd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ( ( 1 · ( abs ‘ 𝐴 ) ) < ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↔ 1 < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ) ) |
| 58 | 56 57 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → 1 < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ) |
| 59 | expmulnbnd | ⊢ ( ( 1 ∈ ℝ ∧ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ∈ ℝ ∧ 1 < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ) → ∃ 𝑛 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ) | |
| 60 | 38 47 58 59 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ∃ 𝑛 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ) |
| 61 | eluznn0 | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑘 ∈ ℕ0 ) | |
| 62 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 63 | 62 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 64 | 63 | mullidd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 1 · 𝑘 ) = 𝑘 ) |
| 65 | 43 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ∈ ℂ ) |
| 66 | 65 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ∈ ℂ ) |
| 67 | 48 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 68 | 46 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 69 | 68 | rpne0d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 70 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 71 | 66 67 69 70 | expdivd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) = ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 72 | 64 71 | breq12d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ↔ 𝑘 < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) ) |
| 73 | nn0re | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) | |
| 74 | 73 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℝ ) |
| 75 | reexpcl | ⊢ ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ∈ ℝ ) | |
| 76 | 44 75 | sylan | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ∈ ℝ ) |
| 77 | 40 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 78 | reexpcl | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) | |
| 79 | 77 78 | sylan | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
| 80 | 77 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 81 | nn0z | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) | |
| 82 | 81 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℤ ) |
| 83 | 68 | rpgt0d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → 0 < ( abs ‘ 𝐴 ) ) |
| 84 | expgt0 | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < ( abs ‘ 𝐴 ) ) → 0 < ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) | |
| 85 | 80 82 83 84 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → 0 < ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 86 | ltmuldiv | ⊢ ( ( 𝑘 ∈ ℝ ∧ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ∈ ℝ ∧ ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ↔ 𝑘 < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) ) | |
| 87 | 74 76 79 85 86 | syl112anc | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ↔ 𝑘 < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) ) |
| 88 | 72 87 | bitr4d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ↔ ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) |
| 89 | 61 88 | sylan2 | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) ) → ( ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ↔ ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) |
| 90 | 89 | anassrs | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ↔ ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) |
| 91 | 90 | ralbidva | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) |
| 92 | simprl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) → 𝑛 ∈ ℕ0 ) | |
| 93 | oveq2 | ⊢ ( 𝑘 = 𝑚 → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) | |
| 94 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) | |
| 95 | ovex | ⊢ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ∈ V | |
| 96 | 93 94 95 | fvmpt | ⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑚 ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) |
| 97 | 96 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑚 ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) |
| 98 | 43 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ∈ ℝ ) |
| 99 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) | |
| 100 | 98 99 | reexpcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ∈ ℝ ) |
| 101 | 97 100 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 102 | id | ⊢ ( 𝑘 = 𝑚 → 𝑘 = 𝑚 ) | |
| 103 | oveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝐴 ↑ 𝑘 ) = ( 𝐴 ↑ 𝑚 ) ) | |
| 104 | 102 103 | oveq12d | ⊢ ( 𝑘 = 𝑚 → ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) = ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) |
| 105 | ovex | ⊢ ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ∈ V | |
| 106 | 104 1 105 | fvmpt | ⊢ ( 𝑚 ∈ ℕ0 → ( 𝐹 ‘ 𝑚 ) = ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) |
| 107 | 106 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑚 ) = ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) |
| 108 | nn0cn | ⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ ) | |
| 109 | 108 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℂ ) |
| 110 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑚 ) ∈ ℂ ) | |
| 111 | 110 | ad4ant14 | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑚 ) ∈ ℂ ) |
| 112 | 109 111 | mulcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ∈ ℂ ) |
| 113 | 107 112 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 114 | 0red | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 ∈ ℝ ) | |
| 115 | absge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) | |
| 116 | 115 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 117 | 114 40 43 116 54 | lelttrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 < ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) |
| 118 | 114 43 117 | ltled | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 ≤ ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) |
| 119 | 43 118 | absidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) = ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) |
| 120 | avglt2 | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) < 1 ↔ ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) < 1 ) ) | |
| 121 | 40 51 120 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( abs ‘ 𝐴 ) < 1 ↔ ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) < 1 ) ) |
| 122 | 50 121 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) < 1 ) |
| 123 | 119 122 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) < 1 ) |
| 124 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑛 ) ) | |
| 125 | ovex | ⊢ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑛 ) ∈ V | |
| 126 | 124 94 125 | fvmpt | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑛 ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑛 ) ) |
| 127 | 126 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑛 ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑛 ) ) |
| 128 | 65 123 127 | geolim | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ⇝ ( 1 / ( 1 − ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) ) ) |
| 129 | seqex | ⊢ seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∈ V | |
| 130 | ovex | ⊢ ( 1 / ( 1 − ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) ) ∈ V | |
| 131 | 129 130 | breldm | ⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ⇝ ( 1 / ( 1 − ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∈ dom ⇝ ) |
| 132 | 128 131 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∈ dom ⇝ ) |
| 133 | 132 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∈ dom ⇝ ) |
| 134 | 1red | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) → 1 ∈ ℝ ) | |
| 135 | eluznn0 | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ℕ0 ) | |
| 136 | 92 135 | sylan | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ℕ0 ) |
| 137 | 136 | nn0red | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ℝ ) |
| 138 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐴 ∈ ℂ ) | |
| 139 | 138 | abscld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 140 | 139 136 | reexpcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ∈ ℝ ) |
| 141 | 137 140 | remulcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) ∈ ℝ ) |
| 142 | 136 100 | syldan | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ∈ ℝ ) |
| 143 | simprr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) | |
| 144 | oveq2 | ⊢ ( 𝑘 = 𝑚 → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) | |
| 145 | 102 144 | oveq12d | ⊢ ( 𝑘 = 𝑚 → ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) = ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) ) |
| 146 | 145 93 | breq12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ↔ ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) ) |
| 147 | 146 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) |
| 148 | 143 147 | sylan | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) |
| 149 | 141 142 148 | ltled | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) ≤ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) |
| 150 | 136 | nn0cnd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ℂ ) |
| 151 | 138 136 | expcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐴 ↑ 𝑚 ) ∈ ℂ ) |
| 152 | 150 151 | absmuld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) = ( ( abs ‘ 𝑚 ) · ( abs ‘ ( 𝐴 ↑ 𝑚 ) ) ) ) |
| 153 | 136 | nn0ge0d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 0 ≤ 𝑚 ) |
| 154 | 137 153 | absidd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ 𝑚 ) = 𝑚 ) |
| 155 | 138 136 | absexpd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ ( 𝐴 ↑ 𝑚 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) |
| 156 | 154 155 | oveq12d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( abs ‘ 𝑚 ) · ( abs ‘ ( 𝐴 ↑ 𝑚 ) ) ) = ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) ) |
| 157 | 152 156 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) = ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) ) |
| 158 | 142 | recnd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ∈ ℂ ) |
| 159 | 158 | mullidd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 1 · ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) |
| 160 | 149 157 159 | 3brtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) ≤ ( 1 · ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) ) |
| 161 | 136 106 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) = ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) |
| 162 | 161 | fveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑚 ) ) = ( abs ‘ ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) ) |
| 163 | 136 96 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑚 ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) |
| 164 | 163 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 1 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑚 ) ) = ( 1 · ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) ) |
| 165 | 160 162 164 | 3brtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑚 ) ) ≤ ( 1 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑚 ) ) ) |
| 166 | 25 92 101 113 133 134 165 | cvgcmpce | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 167 | 166 | expr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 168 | 167 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 169 | 91 168 | sylbid | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 170 | 169 | rexlimdva | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ( ∃ 𝑛 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 171 | 60 170 | mpd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 172 | 37 171 | pm2.61dane | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |