This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient of a topological group by a closed normal subgroup is a Hausdorff topological group. In particular, the quotient by the closure of the identity is a Hausdorff topological group, isomorphic to both the Kolmogorov quotient and the Hausdorff quotient operations on topological spaces (because T0 and Hausdorff coincide for topological groups). (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qustgp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) | |
| qustgphaus.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| qustgphaus.k | ⊢ 𝐾 = ( TopOpen ‘ 𝐻 ) | ||
| Assertion | qustgphaus | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐾 ∈ Haus ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qustgp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) | |
| 2 | qustgphaus.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | qustgphaus.k | ⊢ 𝐾 = ( TopOpen ‘ 𝐻 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 5 | 1 4 | qus0 | ⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = ( 0g ‘ 𝐻 ) ) |
| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = ( 0g ‘ 𝐻 ) ) |
| 7 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐺 ∈ Grp ) |
| 9 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 10 | 9 4 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 11 | 8 10 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 12 | ovex | ⊢ ( 𝐺 ~QG 𝑌 ) ∈ V | |
| 13 | 12 | ecelqsi | ⊢ ( ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ) |
| 14 | 11 13 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ) |
| 15 | 6 14 | eqeltrrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 0g ‘ 𝐻 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ) |
| 16 | 15 | snssd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → { ( 0g ‘ 𝐻 ) } ⊆ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ) |
| 17 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 18 | 17 | mptpreima | ⊢ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) “ { ( 0g ‘ 𝐻 ) } ) = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ { ( 0g ‘ 𝐻 ) } } |
| 19 | nsgsubg | ⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 20 | 19 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 21 | eqid | ⊢ ( 𝐺 ~QG 𝑌 ) = ( 𝐺 ~QG 𝑌 ) | |
| 22 | 9 21 4 | eqgid | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = 𝑌 ) |
| 23 | 20 22 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = 𝑌 ) |
| 24 | 9 | subgss | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ ( Base ‘ 𝐺 ) ) |
| 25 | 20 24 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑌 ⊆ ( Base ‘ 𝐺 ) ) |
| 26 | 23 25 | eqsstrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 27 | sseqin2 | ⊢ ( [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ⊆ ( Base ‘ 𝐺 ) ↔ ( ( Base ‘ 𝐺 ) ∩ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ) = [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ) | |
| 28 | 26 27 | sylib | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( Base ‘ 𝐺 ) ∩ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ) = [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 29 | 9 21 | eqger | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑌 ) Er ( Base ‘ 𝐺 ) ) |
| 30 | 20 29 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐺 ~QG 𝑌 ) Er ( Base ‘ 𝐺 ) ) |
| 31 | 30 11 | erth | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 0g ‘ 𝐺 ) ( 𝐺 ~QG 𝑌 ) 𝑥 ↔ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ( 𝐺 ~QG 𝑌 ) 𝑥 ↔ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) |
| 33 | 6 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = ( 0g ‘ 𝐻 ) ) |
| 34 | 33 | eqeq1d | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ↔ ( 0g ‘ 𝐻 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) |
| 35 | 32 34 | bitrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ( 𝐺 ~QG 𝑌 ) 𝑥 ↔ ( 0g ‘ 𝐻 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) |
| 36 | vex | ⊢ 𝑥 ∈ V | |
| 37 | fvex | ⊢ ( 0g ‘ 𝐺 ) ∈ V | |
| 38 | 36 37 | elec | ⊢ ( 𝑥 ∈ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ↔ ( 0g ‘ 𝐺 ) ( 𝐺 ~QG 𝑌 ) 𝑥 ) |
| 39 | fvex | ⊢ ( 0g ‘ 𝐻 ) ∈ V | |
| 40 | 39 | elsn2 | ⊢ ( [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ { ( 0g ‘ 𝐻 ) } ↔ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = ( 0g ‘ 𝐻 ) ) |
| 41 | eqcom | ⊢ ( [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = ( 0g ‘ 𝐻 ) ↔ ( 0g ‘ 𝐻 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 42 | 40 41 | bitri | ⊢ ( [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ { ( 0g ‘ 𝐻 ) } ↔ ( 0g ‘ 𝐻 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) |
| 43 | 35 38 42 | 3bitr4g | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ↔ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ { ( 0g ‘ 𝐻 ) } ) ) |
| 44 | 43 | rabbi2dva | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( Base ‘ 𝐺 ) ∩ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ) = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ { ( 0g ‘ 𝐻 ) } } ) |
| 45 | 28 44 23 | 3eqtr3d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ { ( 0g ‘ 𝐻 ) } } = 𝑌 ) |
| 46 | 18 45 | eqtrid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) “ { ( 0g ‘ 𝐻 ) } ) = 𝑌 ) |
| 47 | simp3 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 48 | 46 47 | eqeltrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) “ { ( 0g ‘ 𝐻 ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 49 | 2 9 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 50 | 49 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 51 | 1 | a1i | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) ) |
| 52 | eqidd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 53 | 12 | a1i | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐺 ~QG 𝑌 ) ∈ V ) |
| 54 | simp1 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐺 ∈ TopGrp ) | |
| 55 | 51 52 17 53 54 | quslem | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) : ( Base ‘ 𝐺 ) –onto→ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ) |
| 56 | qtopcld | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) : ( Base ‘ 𝐺 ) –onto→ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ) → ( { ( 0g ‘ 𝐻 ) } ∈ ( Clsd ‘ ( 𝐽 qTop ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) ) ↔ ( { ( 0g ‘ 𝐻 ) } ⊆ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ∧ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) “ { ( 0g ‘ 𝐻 ) } ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) | |
| 57 | 50 55 56 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( { ( 0g ‘ 𝐻 ) } ∈ ( Clsd ‘ ( 𝐽 qTop ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) ) ↔ ( { ( 0g ‘ 𝐻 ) } ⊆ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ∧ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) “ { ( 0g ‘ 𝐻 ) } ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
| 58 | 16 48 57 | mpbir2and | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → { ( 0g ‘ 𝐻 ) } ∈ ( Clsd ‘ ( 𝐽 qTop ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) ) ) |
| 59 | 51 52 17 53 54 | qusval | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐻 = ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) “s 𝐺 ) ) |
| 60 | 59 52 55 54 2 3 | imastopn | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐾 = ( 𝐽 qTop ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) ) |
| 61 | 60 | fveq2d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( Clsd ‘ 𝐾 ) = ( Clsd ‘ ( 𝐽 qTop ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) ) ) |
| 62 | 58 61 | eleqtrrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → { ( 0g ‘ 𝐻 ) } ∈ ( Clsd ‘ 𝐾 ) ) |
| 63 | 1 | qustgp | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐻 ∈ TopGrp ) |
| 64 | 63 | 3adant3 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐻 ∈ TopGrp ) |
| 65 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 66 | 65 3 | tgphaus | ⊢ ( 𝐻 ∈ TopGrp → ( 𝐾 ∈ Haus ↔ { ( 0g ‘ 𝐻 ) } ∈ ( Clsd ‘ 𝐾 ) ) ) |
| 67 | 64 66 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐾 ∈ Haus ↔ { ( 0g ‘ 𝐻 ) } ∈ ( Clsd ‘ 𝐾 ) ) ) |
| 68 | 62 67 | mpbird | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐾 ∈ Haus ) |