This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient of a topological group by a closed normal subgroup is a Hausdorff topological group. In particular, the quotient by the closure of the identity is a Hausdorff topological group, isomorphic to both the Kolmogorov quotient and the Hausdorff quotient operations on topological spaces (because T0 and Hausdorff coincide for topological groups). (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qustgp.h | |- H = ( G /s ( G ~QG Y ) ) |
|
| qustgphaus.j | |- J = ( TopOpen ` G ) |
||
| qustgphaus.k | |- K = ( TopOpen ` H ) |
||
| Assertion | qustgphaus | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> K e. Haus ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qustgp.h | |- H = ( G /s ( G ~QG Y ) ) |
|
| 2 | qustgphaus.j | |- J = ( TopOpen ` G ) |
|
| 3 | qustgphaus.k | |- K = ( TopOpen ` H ) |
|
| 4 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 5 | 1 4 | qus0 | |- ( Y e. ( NrmSGrp ` G ) -> [ ( 0g ` G ) ] ( G ~QG Y ) = ( 0g ` H ) ) |
| 6 | 5 | 3ad2ant2 | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> [ ( 0g ` G ) ] ( G ~QG Y ) = ( 0g ` H ) ) |
| 7 | tgpgrp | |- ( G e. TopGrp -> G e. Grp ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> G e. Grp ) |
| 9 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 10 | 9 4 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
| 11 | 8 10 | syl | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> ( 0g ` G ) e. ( Base ` G ) ) |
| 12 | ovex | |- ( G ~QG Y ) e. _V |
|
| 13 | 12 | ecelqsi | |- ( ( 0g ` G ) e. ( Base ` G ) -> [ ( 0g ` G ) ] ( G ~QG Y ) e. ( ( Base ` G ) /. ( G ~QG Y ) ) ) |
| 14 | 11 13 | syl | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> [ ( 0g ` G ) ] ( G ~QG Y ) e. ( ( Base ` G ) /. ( G ~QG Y ) ) ) |
| 15 | 6 14 | eqeltrrd | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> ( 0g ` H ) e. ( ( Base ` G ) /. ( G ~QG Y ) ) ) |
| 16 | 15 | snssd | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> { ( 0g ` H ) } C_ ( ( Base ` G ) /. ( G ~QG Y ) ) ) |
| 17 | eqid | |- ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) = ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) |
|
| 18 | 17 | mptpreima | |- ( `' ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) " { ( 0g ` H ) } ) = { x e. ( Base ` G ) | [ x ] ( G ~QG Y ) e. { ( 0g ` H ) } } |
| 19 | nsgsubg | |- ( Y e. ( NrmSGrp ` G ) -> Y e. ( SubGrp ` G ) ) |
|
| 20 | 19 | 3ad2ant2 | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> Y e. ( SubGrp ` G ) ) |
| 21 | eqid | |- ( G ~QG Y ) = ( G ~QG Y ) |
|
| 22 | 9 21 4 | eqgid | |- ( Y e. ( SubGrp ` G ) -> [ ( 0g ` G ) ] ( G ~QG Y ) = Y ) |
| 23 | 20 22 | syl | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> [ ( 0g ` G ) ] ( G ~QG Y ) = Y ) |
| 24 | 9 | subgss | |- ( Y e. ( SubGrp ` G ) -> Y C_ ( Base ` G ) ) |
| 25 | 20 24 | syl | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> Y C_ ( Base ` G ) ) |
| 26 | 23 25 | eqsstrd | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> [ ( 0g ` G ) ] ( G ~QG Y ) C_ ( Base ` G ) ) |
| 27 | sseqin2 | |- ( [ ( 0g ` G ) ] ( G ~QG Y ) C_ ( Base ` G ) <-> ( ( Base ` G ) i^i [ ( 0g ` G ) ] ( G ~QG Y ) ) = [ ( 0g ` G ) ] ( G ~QG Y ) ) |
|
| 28 | 26 27 | sylib | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> ( ( Base ` G ) i^i [ ( 0g ` G ) ] ( G ~QG Y ) ) = [ ( 0g ` G ) ] ( G ~QG Y ) ) |
| 29 | 9 21 | eqger | |- ( Y e. ( SubGrp ` G ) -> ( G ~QG Y ) Er ( Base ` G ) ) |
| 30 | 20 29 | syl | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> ( G ~QG Y ) Er ( Base ` G ) ) |
| 31 | 30 11 | erth | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> ( ( 0g ` G ) ( G ~QG Y ) x <-> [ ( 0g ` G ) ] ( G ~QG Y ) = [ x ] ( G ~QG Y ) ) ) |
| 32 | 31 | adantr | |- ( ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) /\ x e. ( Base ` G ) ) -> ( ( 0g ` G ) ( G ~QG Y ) x <-> [ ( 0g ` G ) ] ( G ~QG Y ) = [ x ] ( G ~QG Y ) ) ) |
| 33 | 6 | adantr | |- ( ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) /\ x e. ( Base ` G ) ) -> [ ( 0g ` G ) ] ( G ~QG Y ) = ( 0g ` H ) ) |
| 34 | 33 | eqeq1d | |- ( ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) /\ x e. ( Base ` G ) ) -> ( [ ( 0g ` G ) ] ( G ~QG Y ) = [ x ] ( G ~QG Y ) <-> ( 0g ` H ) = [ x ] ( G ~QG Y ) ) ) |
| 35 | 32 34 | bitrd | |- ( ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) /\ x e. ( Base ` G ) ) -> ( ( 0g ` G ) ( G ~QG Y ) x <-> ( 0g ` H ) = [ x ] ( G ~QG Y ) ) ) |
| 36 | vex | |- x e. _V |
|
| 37 | fvex | |- ( 0g ` G ) e. _V |
|
| 38 | 36 37 | elec | |- ( x e. [ ( 0g ` G ) ] ( G ~QG Y ) <-> ( 0g ` G ) ( G ~QG Y ) x ) |
| 39 | fvex | |- ( 0g ` H ) e. _V |
|
| 40 | 39 | elsn2 | |- ( [ x ] ( G ~QG Y ) e. { ( 0g ` H ) } <-> [ x ] ( G ~QG Y ) = ( 0g ` H ) ) |
| 41 | eqcom | |- ( [ x ] ( G ~QG Y ) = ( 0g ` H ) <-> ( 0g ` H ) = [ x ] ( G ~QG Y ) ) |
|
| 42 | 40 41 | bitri | |- ( [ x ] ( G ~QG Y ) e. { ( 0g ` H ) } <-> ( 0g ` H ) = [ x ] ( G ~QG Y ) ) |
| 43 | 35 38 42 | 3bitr4g | |- ( ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) /\ x e. ( Base ` G ) ) -> ( x e. [ ( 0g ` G ) ] ( G ~QG Y ) <-> [ x ] ( G ~QG Y ) e. { ( 0g ` H ) } ) ) |
| 44 | 43 | rabbi2dva | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> ( ( Base ` G ) i^i [ ( 0g ` G ) ] ( G ~QG Y ) ) = { x e. ( Base ` G ) | [ x ] ( G ~QG Y ) e. { ( 0g ` H ) } } ) |
| 45 | 28 44 23 | 3eqtr3d | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> { x e. ( Base ` G ) | [ x ] ( G ~QG Y ) e. { ( 0g ` H ) } } = Y ) |
| 46 | 18 45 | eqtrid | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> ( `' ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) " { ( 0g ` H ) } ) = Y ) |
| 47 | simp3 | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> Y e. ( Clsd ` J ) ) |
|
| 48 | 46 47 | eqeltrd | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> ( `' ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) " { ( 0g ` H ) } ) e. ( Clsd ` J ) ) |
| 49 | 2 9 | tgptopon | |- ( G e. TopGrp -> J e. ( TopOn ` ( Base ` G ) ) ) |
| 50 | 49 | 3ad2ant1 | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> J e. ( TopOn ` ( Base ` G ) ) ) |
| 51 | 1 | a1i | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> H = ( G /s ( G ~QG Y ) ) ) |
| 52 | eqidd | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> ( Base ` G ) = ( Base ` G ) ) |
|
| 53 | 12 | a1i | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> ( G ~QG Y ) e. _V ) |
| 54 | simp1 | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> G e. TopGrp ) |
|
| 55 | 51 52 17 53 54 | quslem | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) : ( Base ` G ) -onto-> ( ( Base ` G ) /. ( G ~QG Y ) ) ) |
| 56 | qtopcld | |- ( ( J e. ( TopOn ` ( Base ` G ) ) /\ ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) : ( Base ` G ) -onto-> ( ( Base ` G ) /. ( G ~QG Y ) ) ) -> ( { ( 0g ` H ) } e. ( Clsd ` ( J qTop ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) ) ) <-> ( { ( 0g ` H ) } C_ ( ( Base ` G ) /. ( G ~QG Y ) ) /\ ( `' ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) " { ( 0g ` H ) } ) e. ( Clsd ` J ) ) ) ) |
|
| 57 | 50 55 56 | syl2anc | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> ( { ( 0g ` H ) } e. ( Clsd ` ( J qTop ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) ) ) <-> ( { ( 0g ` H ) } C_ ( ( Base ` G ) /. ( G ~QG Y ) ) /\ ( `' ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) " { ( 0g ` H ) } ) e. ( Clsd ` J ) ) ) ) |
| 58 | 16 48 57 | mpbir2and | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> { ( 0g ` H ) } e. ( Clsd ` ( J qTop ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) ) ) ) |
| 59 | 51 52 17 53 54 | qusval | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> H = ( ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) "s G ) ) |
| 60 | 59 52 55 54 2 3 | imastopn | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> K = ( J qTop ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) ) ) |
| 61 | 60 | fveq2d | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> ( Clsd ` K ) = ( Clsd ` ( J qTop ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) ) ) ) |
| 62 | 58 61 | eleqtrrd | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> { ( 0g ` H ) } e. ( Clsd ` K ) ) |
| 63 | 1 | qustgp | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) ) -> H e. TopGrp ) |
| 64 | 63 | 3adant3 | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> H e. TopGrp ) |
| 65 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 66 | 65 3 | tgphaus | |- ( H e. TopGrp -> ( K e. Haus <-> { ( 0g ` H ) } e. ( Clsd ` K ) ) ) |
| 67 | 64 66 | syl | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> ( K e. Haus <-> { ( 0g ` H ) } e. ( Clsd ` K ) ) ) |
| 68 | 62 67 | mpbird | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) /\ Y e. ( Clsd ` J ) ) -> K e. Haus ) |