This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a family of topological monoids is a topological monoid. (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdstmdd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdstmdd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdstmdd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdstmdd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ TopMnd ) | ||
| Assertion | prdstmdd | ⊢ ( 𝜑 → 𝑌 ∈ TopMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdstmdd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdstmdd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 3 | prdstmdd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdstmdd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ TopMnd ) | |
| 5 | tmdmnd | ⊢ ( 𝑥 ∈ TopMnd → 𝑥 ∈ Mnd ) | |
| 6 | 5 | ssriv | ⊢ TopMnd ⊆ Mnd |
| 7 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ TopMnd ∧ TopMnd ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd ) | |
| 8 | 4 6 7 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) |
| 9 | 1 2 3 8 | prdsmndd | ⊢ ( 𝜑 → 𝑌 ∈ Mnd ) |
| 10 | tmdtps | ⊢ ( 𝑥 ∈ TopMnd → 𝑥 ∈ TopSp ) | |
| 11 | 10 | ssriv | ⊢ TopMnd ⊆ TopSp |
| 12 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ TopMnd ∧ TopMnd ⊆ TopSp ) → 𝑅 : 𝐼 ⟶ TopSp ) | |
| 13 | 4 11 12 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ TopSp ) |
| 14 | 1 3 2 13 | prdstps | ⊢ ( 𝜑 → 𝑌 ∈ TopSp ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 16 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑌 ) ∧ 𝑔 ∈ ( Base ‘ 𝑌 ) ) → 𝑆 ∈ 𝑉 ) |
| 17 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑌 ) ∧ 𝑔 ∈ ( Base ‘ 𝑌 ) ) → 𝐼 ∈ 𝑊 ) |
| 18 | 4 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 19 | 18 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑌 ) ∧ 𝑔 ∈ ( Base ‘ 𝑌 ) ) → 𝑅 Fn 𝐼 ) |
| 20 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑌 ) ∧ 𝑔 ∈ ( Base ‘ 𝑌 ) ) → 𝑓 ∈ ( Base ‘ 𝑌 ) ) | |
| 21 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑌 ) ∧ 𝑔 ∈ ( Base ‘ 𝑌 ) ) → 𝑔 ∈ ( Base ‘ 𝑌 ) ) | |
| 22 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 23 | 1 15 16 17 19 20 21 22 | prdsplusgval | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑌 ) ∧ 𝑔 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑓 ( +g ‘ 𝑌 ) 𝑔 ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑘 ) ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 24 | 23 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑓 ∈ ( Base ‘ 𝑌 ) , 𝑔 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑓 ( +g ‘ 𝑌 ) 𝑔 ) ) = ( 𝑓 ∈ ( Base ‘ 𝑌 ) , 𝑔 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑘 ) ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 25 | eqid | ⊢ ( +𝑓 ‘ 𝑌 ) = ( +𝑓 ‘ 𝑌 ) | |
| 26 | 15 22 25 | plusffval | ⊢ ( +𝑓 ‘ 𝑌 ) = ( 𝑓 ∈ ( Base ‘ 𝑌 ) , 𝑔 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑓 ( +g ‘ 𝑌 ) 𝑔 ) ) |
| 27 | vex | ⊢ 𝑓 ∈ V | |
| 28 | vex | ⊢ 𝑔 ∈ V | |
| 29 | 27 28 | op1std | ⊢ ( 𝑧 = 〈 𝑓 , 𝑔 〉 → ( 1st ‘ 𝑧 ) = 𝑓 ) |
| 30 | 29 | fveq1d | ⊢ ( 𝑧 = 〈 𝑓 , 𝑔 〉 → ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 31 | 27 28 | op2ndd | ⊢ ( 𝑧 = 〈 𝑓 , 𝑔 〉 → ( 2nd ‘ 𝑧 ) = 𝑔 ) |
| 32 | 31 | fveq1d | ⊢ ( 𝑧 = 〈 𝑓 , 𝑔 〉 → ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) |
| 33 | 30 32 | oveq12d | ⊢ ( 𝑧 = 〈 𝑓 , 𝑔 〉 → ( ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) = ( ( 𝑓 ‘ 𝑘 ) ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) ( 𝑔 ‘ 𝑘 ) ) ) |
| 34 | 33 | mpteq2dv | ⊢ ( 𝑧 = 〈 𝑓 , 𝑔 〉 → ( 𝑘 ∈ 𝐼 ↦ ( ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑘 ) ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 35 | 34 | mpompt | ⊢ ( 𝑧 ∈ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ↦ ( 𝑘 ∈ 𝐼 ↦ ( ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) ) ) = ( 𝑓 ∈ ( Base ‘ 𝑌 ) , 𝑔 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑘 ) ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 36 | 24 26 35 | 3eqtr4g | ⊢ ( 𝜑 → ( +𝑓 ‘ 𝑌 ) = ( 𝑧 ∈ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ↦ ( 𝑘 ∈ 𝐼 ↦ ( ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) ) ) ) |
| 37 | eqid | ⊢ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) | |
| 38 | eqid | ⊢ ( TopOpen ‘ 𝑌 ) = ( TopOpen ‘ 𝑌 ) | |
| 39 | 15 38 | istps | ⊢ ( 𝑌 ∈ TopSp ↔ ( TopOpen ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) ) |
| 40 | 14 39 | sylib | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) ) |
| 41 | txtopon | ⊢ ( ( ( TopOpen ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) ∧ ( TopOpen ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) ) → ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) ∈ ( TopOn ‘ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ) | |
| 42 | 40 40 41 | syl2anc | ⊢ ( 𝜑 → ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) ∈ ( TopOn ‘ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ) |
| 43 | topnfn | ⊢ TopOpen Fn V | |
| 44 | ssv | ⊢ TopSp ⊆ V | |
| 45 | fnssres | ⊢ ( ( TopOpen Fn V ∧ TopSp ⊆ V ) → ( TopOpen ↾ TopSp ) Fn TopSp ) | |
| 46 | 43 44 45 | mp2an | ⊢ ( TopOpen ↾ TopSp ) Fn TopSp |
| 47 | fvres | ⊢ ( 𝑥 ∈ TopSp → ( ( TopOpen ↾ TopSp ) ‘ 𝑥 ) = ( TopOpen ‘ 𝑥 ) ) | |
| 48 | eqid | ⊢ ( TopOpen ‘ 𝑥 ) = ( TopOpen ‘ 𝑥 ) | |
| 49 | 48 | tpstop | ⊢ ( 𝑥 ∈ TopSp → ( TopOpen ‘ 𝑥 ) ∈ Top ) |
| 50 | 47 49 | eqeltrd | ⊢ ( 𝑥 ∈ TopSp → ( ( TopOpen ↾ TopSp ) ‘ 𝑥 ) ∈ Top ) |
| 51 | 50 | rgen | ⊢ ∀ 𝑥 ∈ TopSp ( ( TopOpen ↾ TopSp ) ‘ 𝑥 ) ∈ Top |
| 52 | ffnfv | ⊢ ( ( TopOpen ↾ TopSp ) : TopSp ⟶ Top ↔ ( ( TopOpen ↾ TopSp ) Fn TopSp ∧ ∀ 𝑥 ∈ TopSp ( ( TopOpen ↾ TopSp ) ‘ 𝑥 ) ∈ Top ) ) | |
| 53 | 46 51 52 | mpbir2an | ⊢ ( TopOpen ↾ TopSp ) : TopSp ⟶ Top |
| 54 | fco2 | ⊢ ( ( ( TopOpen ↾ TopSp ) : TopSp ⟶ Top ∧ 𝑅 : 𝐼 ⟶ TopSp ) → ( TopOpen ∘ 𝑅 ) : 𝐼 ⟶ Top ) | |
| 55 | 53 13 54 | sylancr | ⊢ ( 𝜑 → ( TopOpen ∘ 𝑅 ) : 𝐼 ⟶ Top ) |
| 56 | 33 | mpompt | ⊢ ( 𝑧 ∈ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ↦ ( ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) ) = ( 𝑓 ∈ ( Base ‘ 𝑌 ) , 𝑔 ∈ ( Base ‘ 𝑌 ) ↦ ( ( 𝑓 ‘ 𝑘 ) ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) ( 𝑔 ‘ 𝑘 ) ) ) |
| 57 | eqid | ⊢ ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) | |
| 58 | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) | |
| 59 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑘 ) ∈ TopMnd ) |
| 60 | 40 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( TopOpen ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) ) |
| 61 | 60 60 | cnmpt1st | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑓 ∈ ( Base ‘ 𝑌 ) , 𝑔 ∈ ( Base ‘ 𝑌 ) ↦ 𝑓 ) ∈ ( ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) Cn ( TopOpen ‘ 𝑌 ) ) ) |
| 62 | 1 3 2 18 38 | prdstopn | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑌 ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 63 | 62 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( TopOpen ‘ 𝑌 ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 64 | 63 60 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) ) |
| 65 | toponuni | ⊢ ( ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) → ( Base ‘ 𝑌 ) = ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) | |
| 66 | 64 65 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( Base ‘ 𝑌 ) = ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 67 | 66 | mpteq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑥 ‘ 𝑘 ) ) = ( 𝑥 ∈ ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ↦ ( 𝑥 ‘ 𝑘 ) ) ) |
| 68 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 69 | 55 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( TopOpen ∘ 𝑅 ) : 𝐼 ⟶ Top ) |
| 70 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑘 ∈ 𝐼 ) | |
| 71 | eqid | ⊢ ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) | |
| 72 | 71 37 | ptpjcn | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( TopOpen ∘ 𝑅 ) : 𝐼 ⟶ Top ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ↦ ( 𝑥 ‘ 𝑘 ) ) ∈ ( ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) Cn ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) |
| 73 | 68 69 70 72 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ↦ ( 𝑥 ‘ 𝑘 ) ) ∈ ( ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) Cn ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) |
| 74 | 67 73 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑥 ‘ 𝑘 ) ) ∈ ( ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) Cn ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) |
| 75 | 63 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( TopOpen ‘ 𝑌 ) ) |
| 76 | fvco3 | ⊢ ( ( 𝑅 : 𝐼 ⟶ TopMnd ∧ 𝑘 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) ) | |
| 77 | 4 76 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 78 | 75 77 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) Cn ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) = ( ( TopOpen ‘ 𝑌 ) Cn ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 79 | 74 78 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑥 ‘ 𝑘 ) ) ∈ ( ( TopOpen ‘ 𝑌 ) Cn ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 80 | fveq1 | ⊢ ( 𝑥 = 𝑓 → ( 𝑥 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) | |
| 81 | 60 60 61 60 79 80 | cnmpt21 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑓 ∈ ( Base ‘ 𝑌 ) , 𝑔 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ ( ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) Cn ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 82 | 60 60 | cnmpt2nd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑓 ∈ ( Base ‘ 𝑌 ) , 𝑔 ∈ ( Base ‘ 𝑌 ) ↦ 𝑔 ) ∈ ( ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) Cn ( TopOpen ‘ 𝑌 ) ) ) |
| 83 | fveq1 | ⊢ ( 𝑥 = 𝑔 → ( 𝑥 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) | |
| 84 | 60 60 82 60 79 83 | cnmpt21 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑓 ∈ ( Base ‘ 𝑌 ) , 𝑔 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑔 ‘ 𝑘 ) ) ∈ ( ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) Cn ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 85 | 57 58 59 60 60 81 84 | cnmpt2plusg | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑓 ∈ ( Base ‘ 𝑌 ) , 𝑔 ∈ ( Base ‘ 𝑌 ) ↦ ( ( 𝑓 ‘ 𝑘 ) ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) ( 𝑔 ‘ 𝑘 ) ) ) ∈ ( ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) Cn ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 86 | 77 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) Cn ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) = ( ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) Cn ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 87 | 85 86 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑓 ∈ ( Base ‘ 𝑌 ) , 𝑔 ∈ ( Base ‘ 𝑌 ) ↦ ( ( 𝑓 ‘ 𝑘 ) ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) ( 𝑔 ‘ 𝑘 ) ) ) ∈ ( ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) Cn ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) |
| 88 | 56 87 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑧 ∈ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ↦ ( ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) ) ∈ ( ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) Cn ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) |
| 89 | 37 42 2 55 88 | ptcn | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ↦ ( 𝑘 ∈ 𝐼 ↦ ( ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ( +g ‘ ( 𝑅 ‘ 𝑘 ) ) ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) ) ) ∈ ( ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) Cn ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) ) |
| 90 | 36 89 | eqeltrd | ⊢ ( 𝜑 → ( +𝑓 ‘ 𝑌 ) ∈ ( ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) Cn ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) ) |
| 91 | 62 | oveq2d | ⊢ ( 𝜑 → ( ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) Cn ( TopOpen ‘ 𝑌 ) ) = ( ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) Cn ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) ) |
| 92 | 90 91 | eleqtrrd | ⊢ ( 𝜑 → ( +𝑓 ‘ 𝑌 ) ∈ ( ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) Cn ( TopOpen ‘ 𝑌 ) ) ) |
| 93 | 25 38 | istmd | ⊢ ( 𝑌 ∈ TopMnd ↔ ( 𝑌 ∈ Mnd ∧ 𝑌 ∈ TopSp ∧ ( +𝑓 ‘ 𝑌 ) ∈ ( ( ( TopOpen ‘ 𝑌 ) ×t ( TopOpen ‘ 𝑌 ) ) Cn ( TopOpen ‘ 𝑌 ) ) ) ) |
| 94 | 9 14 92 93 | syl3anbrc | ⊢ ( 𝜑 → 𝑌 ∈ TopMnd ) |