This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqger.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| eqger.r | ⊢ ∼ = ( 𝐺 ~QG 𝑌 ) | ||
| eqgid.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | eqgid | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → [ 0 ] ∼ = 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqger.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | eqger.r | ⊢ ∼ = ( 𝐺 ~QG 𝑌 ) | |
| 3 | eqgid.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | 2 | releqg | ⊢ Rel ∼ |
| 5 | relelec | ⊢ ( Rel ∼ → ( 𝑥 ∈ [ 0 ] ∼ ↔ 0 ∼ 𝑥 ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( 𝑥 ∈ [ 0 ] ∼ ↔ 0 ∼ 𝑥 ) |
| 7 | subgrcl | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 9 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 10 | 3 9 | grpinvid | ⊢ ( 𝐺 ∈ Grp → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
| 11 | 8 10 | syl | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
| 12 | 11 | oveq1d | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 0 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 0 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 13 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 14 | 1 13 3 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 15 | 7 14 | sylan | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 16 | 12 15 | eqtrd | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 0 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 17 | 16 | eleq1d | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 0 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ↔ 𝑥 ∈ 𝑌 ) ) |
| 18 | 17 | pm5.32da | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 0 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑌 ) ) ) |
| 19 | 1 | subgss | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ 𝑋 ) |
| 20 | 1 3 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝑋 ) |
| 21 | 7 20 | syl | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑋 ) |
| 22 | 1 9 13 2 | eqgval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 0 ∼ 𝑥 ↔ ( 0 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 0 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) |
| 23 | 3anass | ⊢ ( ( 0 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 0 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ↔ ( 0 ∈ 𝑋 ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 0 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) | |
| 24 | 22 23 | bitrdi | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 0 ∼ 𝑥 ↔ ( 0 ∈ 𝑋 ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 0 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) ) |
| 25 | 24 | baibd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) ∧ 0 ∈ 𝑋 ) → ( 0 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 0 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) |
| 26 | 7 19 21 25 | syl21anc | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 0 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 0 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) |
| 27 | 19 | sseld | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ 𝑌 → 𝑥 ∈ 𝑋 ) ) |
| 28 | 27 | pm4.71rd | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ 𝑌 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑌 ) ) ) |
| 29 | 18 26 28 | 3bitr4d | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 0 ∼ 𝑥 ↔ 𝑥 ∈ 𝑌 ) ) |
| 30 | 6 29 | bitrid | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ [ 0 ] ∼ ↔ 𝑥 ∈ 𝑌 ) ) |
| 31 | 30 | eqrdv | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → [ 0 ] ∼ = 𝑌 ) |