This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqger.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| eqger.r | ⊢ ∼ = ( 𝐺 ~QG 𝑌 ) | ||
| Assertion | eqger | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqger.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | eqger.r | ⊢ ∼ = ( 𝐺 ~QG 𝑌 ) | |
| 3 | 2 | releqg | ⊢ Rel ∼ |
| 4 | 3 | a1i | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → Rel ∼ ) |
| 5 | subgrcl | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 6 | 1 | subgss | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ 𝑋 ) |
| 7 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 8 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 9 | 1 7 8 2 | eqgval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∼ 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) ) ) |
| 10 | 5 6 9 | syl2anc | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∼ 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) ) ) |
| 11 | 10 | biimpa | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) ) |
| 12 | 11 | simp2d | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑦 ∈ 𝑋 ) |
| 13 | 11 | simp1d | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑥 ∈ 𝑋 ) |
| 14 | 5 | adantr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → 𝐺 ∈ Grp ) |
| 15 | 1 7 14 13 | grpinvcld | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ) |
| 16 | 1 8 7 | grpinvadd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 17 | 14 15 12 16 | syl3anc | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 18 | 1 7 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = 𝑥 ) |
| 19 | 14 13 18 | syl2anc | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = 𝑥 ) |
| 20 | 19 | oveq2d | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 21 | 17 20 | eqtrd | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 22 | 11 | simp3d | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) |
| 23 | 7 | subginvcl | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝑌 ) |
| 24 | 22 23 | syldan | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝑌 ) |
| 25 | 21 24 | eqeltrrd | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) |
| 26 | 6 | adantr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑌 ⊆ 𝑋 ) |
| 27 | 1 7 8 2 | eqgval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) |
| 28 | 14 26 27 | syl2anc | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) |
| 29 | 12 13 25 28 | mpbir3and | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑦 ∼ 𝑥 ) |
| 30 | 13 | adantrr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑥 ∈ 𝑋 ) |
| 31 | 1 7 8 2 | eqgval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑦 ∼ 𝑧 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) ) |
| 32 | 5 6 31 | syl2anc | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑦 ∼ 𝑧 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) ) |
| 33 | 32 | biimpa | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑦 ∼ 𝑧 ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) |
| 34 | 33 | adantrl | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) |
| 35 | 34 | simp2d | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑧 ∈ 𝑋 ) |
| 36 | 5 | adantr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝐺 ∈ Grp ) |
| 37 | 1 7 36 30 | grpinvcld | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ) |
| 38 | 12 | adantrr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑦 ∈ 𝑋 ) |
| 39 | 1 7 36 38 | grpinvcld | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
| 40 | 1 8 36 39 35 | grpcld | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
| 41 | 1 8 36 37 38 40 | grpassd | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
| 42 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 43 | 1 8 42 7 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
| 44 | 36 38 43 | syl2anc | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
| 45 | 44 | oveq1d | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 46 | 1 8 36 38 39 35 | grpassd | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 47 | 1 8 42 36 35 | grplidd | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) = 𝑧 ) |
| 48 | 45 46 47 | 3eqtr3d | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 𝑧 ) |
| 49 | 48 | oveq2d | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 50 | 41 49 | eqtrd | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 51 | simpl | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 52 | 22 | adantrr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) |
| 53 | 34 | simp3d | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) |
| 54 | 8 | subgcl | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑌 ) |
| 55 | 51 52 53 54 | syl3anc | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑌 ) |
| 56 | 50 55 | eqeltrrd | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) |
| 57 | 6 | adantr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑌 ⊆ 𝑋 ) |
| 58 | 1 7 8 2 | eqgval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∼ 𝑧 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) ) |
| 59 | 36 57 58 | syl2anc | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑥 ∼ 𝑧 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) ) |
| 60 | 30 35 56 59 | mpbir3and | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑥 ∼ 𝑧 ) |
| 61 | 1 8 42 7 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 62 | 5 61 | sylan | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 63 | 42 | subg0cl | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑌 ) |
| 64 | 63 | adantr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( 0g ‘ 𝐺 ) ∈ 𝑌 ) |
| 65 | 62 64 | eqeltrd | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) |
| 66 | 65 | ex | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ 𝑋 → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) |
| 67 | 66 | pm4.71rd | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ 𝑋 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) ) ) |
| 68 | 1 7 8 2 | eqgval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) |
| 69 | 5 6 68 | syl2anc | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) |
| 70 | df-3an | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) | |
| 71 | anidm | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ↔ 𝑥 ∈ 𝑋 ) | |
| 72 | 71 | anbi2ci | ⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) ) |
| 73 | 70 72 | bitri | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) ) |
| 74 | 69 73 | bitrdi | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∼ 𝑥 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) ) ) |
| 75 | 67 74 | bitr4d | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∼ 𝑥 ) ) |
| 76 | 4 29 60 75 | iserd | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |