This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic property of equivalence relations. Theorem 73 of Suppes p. 82. (Contributed by NM, 23-Jul-1995) (Revised by Mario Carneiro, 6-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | erth.1 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
| erth.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| Assertion | erth | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erth.1 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
| 2 | erth.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 3 | 1 | ersymb | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ 𝐵 𝑅 𝐴 ) ) |
| 4 | 3 | biimpa | ⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → 𝐵 𝑅 𝐴 ) |
| 5 | 1 | ertr | ⊢ ( 𝜑 → ( ( 𝐵 𝑅 𝐴 ∧ 𝐴 𝑅 𝑥 ) → 𝐵 𝑅 𝑥 ) ) |
| 6 | 5 | impl | ⊢ ( ( ( 𝜑 ∧ 𝐵 𝑅 𝐴 ) ∧ 𝐴 𝑅 𝑥 ) → 𝐵 𝑅 𝑥 ) |
| 7 | 4 6 | syldanl | ⊢ ( ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) ∧ 𝐴 𝑅 𝑥 ) → 𝐵 𝑅 𝑥 ) |
| 8 | 1 | ertr | ⊢ ( 𝜑 → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝑥 ) → 𝐴 𝑅 𝑥 ) ) |
| 9 | 8 | impl | ⊢ ( ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) ∧ 𝐵 𝑅 𝑥 ) → 𝐴 𝑅 𝑥 ) |
| 10 | 7 9 | impbida | ⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → ( 𝐴 𝑅 𝑥 ↔ 𝐵 𝑅 𝑥 ) ) |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ∈ 𝑋 ) |
| 13 | elecg | ⊢ ( ( 𝑥 ∈ V ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) | |
| 14 | 11 12 13 | sylancr | ⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) |
| 15 | errel | ⊢ ( 𝑅 Er 𝑋 → Rel 𝑅 ) | |
| 16 | 1 15 | syl | ⊢ ( 𝜑 → Rel 𝑅 ) |
| 17 | brrelex2 | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐵 ∈ V ) | |
| 18 | 16 17 | sylan | ⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → 𝐵 ∈ V ) |
| 19 | elecg | ⊢ ( ( 𝑥 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑥 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝑥 ) ) | |
| 20 | 11 18 19 | sylancr | ⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → ( 𝑥 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝑥 ) ) |
| 21 | 10 14 20 | 3bitr4d | ⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝑥 ∈ [ 𝐵 ] 𝑅 ) ) |
| 22 | 21 | eqrdv | ⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) |
| 23 | 1 | adantr | ⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → 𝑅 Er 𝑋 ) |
| 24 | 1 2 | erref | ⊢ ( 𝜑 → 𝐴 𝑅 𝐴 ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → 𝐴 𝑅 𝐴 ) |
| 26 | 2 | adantr | ⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → 𝐴 ∈ 𝑋 ) |
| 27 | elecg | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝐴 ) ) | |
| 28 | 26 26 27 | syl2anc | ⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → ( 𝐴 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝐴 ) ) |
| 29 | 25 28 | mpbird | ⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → 𝐴 ∈ [ 𝐴 ] 𝑅 ) |
| 30 | simpr | ⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) | |
| 31 | 29 30 | eleqtrd | ⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → 𝐴 ∈ [ 𝐵 ] 𝑅 ) |
| 32 | 23 30 | ereldm | ⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → ( 𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋 ) ) |
| 33 | 26 32 | mpbid | ⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → 𝐵 ∈ 𝑋 ) |
| 34 | elecg | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝐴 ) ) | |
| 35 | 26 33 34 | syl2anc | ⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → ( 𝐴 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝐴 ) ) |
| 36 | 31 35 | mpbid | ⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → 𝐵 𝑅 𝐴 ) |
| 37 | 23 36 | ersym | ⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → 𝐴 𝑅 𝐵 ) |
| 38 | 22 37 | impbida | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) ) |