This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusgrp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) | |
| qus0.p | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | qus0 | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → [ 0 ] ( 𝐺 ~QG 𝑆 ) = ( 0g ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) | |
| 2 | qus0.p | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | nsgsubg | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 6 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 7 | 6 2 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 8 | 5 7 | syl | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 9 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 11 | 1 6 9 10 | qusadd | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 0 ∈ ( Base ‘ 𝐺 ) ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( [ 0 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 0 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 0 ( +g ‘ 𝐺 ) 0 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 12 | 8 8 11 | mpd3an23 | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( [ 0 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 0 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 0 ( +g ‘ 𝐺 ) 0 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 13 | 6 9 2 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 14 | 5 8 13 | syl2anc | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 15 | 14 | eceq1d | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → [ ( 0 ( +g ‘ 𝐺 ) 0 ) ] ( 𝐺 ~QG 𝑆 ) = [ 0 ] ( 𝐺 ~QG 𝑆 ) ) |
| 16 | 12 15 | eqtrd | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( [ 0 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 0 ] ( 𝐺 ~QG 𝑆 ) ) = [ 0 ] ( 𝐺 ~QG 𝑆 ) ) |
| 17 | 1 | qusgrp | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 18 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 19 | 1 6 18 | quseccl | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → [ 0 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
| 20 | 8 19 | mpdan | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → [ 0 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
| 21 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 22 | 18 10 21 | grpid | ⊢ ( ( 𝐻 ∈ Grp ∧ [ 0 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( [ 0 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 0 ] ( 𝐺 ~QG 𝑆 ) ) = [ 0 ] ( 𝐺 ~QG 𝑆 ) ↔ ( 0g ‘ 𝐻 ) = [ 0 ] ( 𝐺 ~QG 𝑆 ) ) ) |
| 23 | 17 20 22 | syl2anc | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( ( [ 0 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ 0 ] ( 𝐺 ~QG 𝑆 ) ) = [ 0 ] ( 𝐺 ~QG 𝑆 ) ↔ ( 0g ‘ 𝐻 ) = [ 0 ] ( 𝐺 ~QG 𝑆 ) ) ) |
| 24 | 16 23 | mpbid | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 0g ‘ 𝐻 ) = [ 0 ] ( 𝐺 ~QG 𝑆 ) ) |
| 25 | 24 | eqcomd | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → [ 0 ] ( 𝐺 ~QG 𝑆 ) = ( 0g ‘ 𝐻 ) ) |