This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topological group is Hausdorff iff the identity subgroup is closed. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgphaus.1 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| tgphaus.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| Assertion | tgphaus | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Haus ↔ { 0 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgphaus.1 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | tgphaus.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | 4 1 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝐺 ∈ TopGrp → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 7 | 2 4 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 8 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐺 ∈ TopGrp → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
| 10 | 6 9 | eleqtrd | ⊢ ( 𝐺 ∈ TopGrp → 0 ∈ ∪ 𝐽 ) |
| 11 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 12 | 11 | sncld | ⊢ ( ( 𝐽 ∈ Haus ∧ 0 ∈ ∪ 𝐽 ) → { 0 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 13 | 12 | expcom | ⊢ ( 0 ∈ ∪ 𝐽 → ( 𝐽 ∈ Haus → { 0 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 14 | 10 13 | syl | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Haus → { 0 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 15 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 16 | 2 15 | tgpsubcn | ⊢ ( 𝐺 ∈ TopGrp → ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 17 | cnclima | ⊢ ( ( ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ∧ { 0 } ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) | |
| 18 | 17 | ex | ⊢ ( ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) → ( { 0 } ∈ ( Clsd ‘ 𝐽 ) → ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) ) |
| 19 | 16 18 | syl | ⊢ ( 𝐺 ∈ TopGrp → ( { 0 } ∈ ( Clsd ‘ 𝐽 ) → ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) ) |
| 20 | cnvimass | ⊢ ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ⊆ dom ( -g ‘ 𝐺 ) | |
| 21 | 4 15 | grpsubf | ⊢ ( 𝐺 ∈ Grp → ( -g ‘ 𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
| 22 | 3 21 | syl | ⊢ ( 𝐺 ∈ TopGrp → ( -g ‘ 𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
| 23 | 20 22 | fssdm | ⊢ ( 𝐺 ∈ TopGrp → ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
| 24 | relxp | ⊢ Rel ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) | |
| 25 | relss | ⊢ ( ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) → ( Rel ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) → Rel ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ) ) | |
| 26 | 23 24 25 | mpisyl | ⊢ ( 𝐺 ∈ TopGrp → Rel ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ) |
| 27 | dfrel4v | ⊢ ( Rel ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ↔ ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) 𝑦 } ) | |
| 28 | 26 27 | sylib | ⊢ ( 𝐺 ∈ TopGrp → ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) 𝑦 } ) |
| 29 | 22 | ffnd | ⊢ ( 𝐺 ∈ TopGrp → ( -g ‘ 𝐺 ) Fn ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
| 30 | elpreima | ⊢ ( ( -g ‘ 𝐺 ) Fn ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ) ) ) | |
| 31 | 29 30 | syl | ⊢ ( 𝐺 ∈ TopGrp → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ) ) ) |
| 32 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) | |
| 33 | 32 | anbi1i | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ) ) |
| 34 | 4 1 15 | grpsubeq0 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 35 | 34 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 36 | 3 35 | sylan | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 37 | df-ov | ⊢ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 38 | 37 | eleq1i | ⊢ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ { 0 } ↔ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ) |
| 39 | ovex | ⊢ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ V | |
| 40 | 39 | elsn | ⊢ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ { 0 } ↔ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = 0 ) |
| 41 | 38 40 | bitr3i | ⊢ ( ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ↔ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = 0 ) |
| 42 | equcom | ⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) | |
| 43 | 36 41 42 | 3bitr4g | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ↔ 𝑦 = 𝑥 ) ) |
| 44 | 43 | pm5.32da | ⊢ ( 𝐺 ∈ TopGrp → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 = 𝑥 ) ) ) |
| 45 | 33 44 | bitrid | ⊢ ( 𝐺 ∈ TopGrp → ( ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 = 𝑥 ) ) ) |
| 46 | 31 45 | bitrd | ⊢ ( 𝐺 ∈ TopGrp → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 = 𝑥 ) ) ) |
| 47 | df-br | ⊢ ( 𝑥 ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ) | |
| 48 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↔ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) | |
| 49 | 48 | biimparc | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 50 | 49 | pm4.71i | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) |
| 51 | an32 | ⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 = 𝑥 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) | |
| 52 | 50 51 | bitr4i | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 = 𝑥 ) ) |
| 53 | 46 47 52 | 3bitr4g | ⊢ ( 𝐺 ∈ TopGrp → ( 𝑥 ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) 𝑦 ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) ) ) |
| 54 | 53 | opabbidv | ⊢ ( 𝐺 ∈ TopGrp → { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) 𝑦 } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) } ) |
| 55 | opabresid | ⊢ ( I ↾ ( Base ‘ 𝐺 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) } | |
| 56 | 54 55 | eqtr4di | ⊢ ( 𝐺 ∈ TopGrp → { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) 𝑦 } = ( I ↾ ( Base ‘ 𝐺 ) ) ) |
| 57 | 9 | reseq2d | ⊢ ( 𝐺 ∈ TopGrp → ( I ↾ ( Base ‘ 𝐺 ) ) = ( I ↾ ∪ 𝐽 ) ) |
| 58 | 28 56 57 | 3eqtrd | ⊢ ( 𝐺 ∈ TopGrp → ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) = ( I ↾ ∪ 𝐽 ) ) |
| 59 | 58 | eleq1d | ⊢ ( 𝐺 ∈ TopGrp → ( ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ↔ ( I ↾ ∪ 𝐽 ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) ) |
| 60 | 19 59 | sylibd | ⊢ ( 𝐺 ∈ TopGrp → ( { 0 } ∈ ( Clsd ‘ 𝐽 ) → ( I ↾ ∪ 𝐽 ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) ) |
| 61 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → 𝐽 ∈ Top ) | |
| 62 | 7 61 | syl | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ Top ) |
| 63 | 11 | hausdiag | ⊢ ( 𝐽 ∈ Haus ↔ ( 𝐽 ∈ Top ∧ ( I ↾ ∪ 𝐽 ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) ) |
| 64 | 63 | baib | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Haus ↔ ( I ↾ ∪ 𝐽 ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) ) |
| 65 | 62 64 | syl | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Haus ↔ ( I ↾ ∪ 𝐽 ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) ) |
| 66 | 60 65 | sylibrd | ⊢ ( 𝐺 ∈ TopGrp → ( { 0 } ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Haus ) ) |
| 67 | 14 66 | impbid | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Haus ↔ { 0 } ∈ ( Clsd ‘ 𝐽 ) ) ) |