This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 9-3.4 of Gleason p. 122. (Contributed by NM, 25-Mar-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prlem934.1 | ⊢ 𝐵 ∈ V | |
| Assertion | prlem934 | ⊢ ( 𝐴 ∈ P → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prlem934.1 | ⊢ 𝐵 ∈ V | |
| 2 | prn0 | ⊢ ( 𝐴 ∈ P → 𝐴 ≠ ∅ ) | |
| 3 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) | |
| 4 | 3 | ex | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 5 | 2 4 | syl | ⊢ ( 𝐴 ∈ P → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 6 | prpssnq | ⊢ ( 𝐴 ∈ P → 𝐴 ⊊ Q ) | |
| 7 | 6 | pssssd | ⊢ ( 𝐴 ∈ P → 𝐴 ⊆ Q ) |
| 8 | 7 | sseld | ⊢ ( 𝐴 ∈ P → ( ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ( 𝑥 +Q 𝐵 ) ∈ Q ) ) |
| 9 | addnqf | ⊢ +Q : ( Q × Q ) ⟶ Q | |
| 10 | 9 | fdmi | ⊢ dom +Q = ( Q × Q ) |
| 11 | 0nnq | ⊢ ¬ ∅ ∈ Q | |
| 12 | 10 11 | ndmovrcl | ⊢ ( ( 𝑥 +Q 𝐵 ) ∈ Q → ( 𝑥 ∈ Q ∧ 𝐵 ∈ Q ) ) |
| 13 | 12 | simprd | ⊢ ( ( 𝑥 +Q 𝐵 ) ∈ Q → 𝐵 ∈ Q ) |
| 14 | 8 13 | syl6com | ⊢ ( ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ( 𝐴 ∈ P → 𝐵 ∈ Q ) ) |
| 15 | 14 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ( 𝐴 ∈ P → 𝐵 ∈ Q ) ) |
| 16 | 15 | com12 | ⊢ ( 𝐴 ∈ P → ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → 𝐵 ∈ Q ) ) |
| 17 | oveq2 | ⊢ ( 𝑏 = 𝐵 → ( 𝑥 +Q 𝑏 ) = ( 𝑥 +Q 𝐵 ) ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ↔ ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 19 | 18 | ralbidv | ⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 20 | 19 | notbid | ⊢ ( 𝑏 = 𝐵 → ( ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 21 | 20 | imbi2d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ∈ P → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ↔ ( 𝐴 ∈ P → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) ) |
| 22 | dfpss2 | ⊢ ( 𝐴 ⊊ Q ↔ ( 𝐴 ⊆ Q ∧ ¬ 𝐴 = Q ) ) | |
| 23 | 6 22 | sylib | ⊢ ( 𝐴 ∈ P → ( 𝐴 ⊆ Q ∧ ¬ 𝐴 = Q ) ) |
| 24 | 23 | simprd | ⊢ ( 𝐴 ∈ P → ¬ 𝐴 = Q ) |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ) → ¬ 𝐴 = Q ) |
| 26 | 7 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) → 𝐴 ⊆ Q ) |
| 27 | simpl1 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → 𝐴 ∈ P ) | |
| 28 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐴 ) | |
| 29 | 2 28 | sylib | ⊢ ( 𝐴 ∈ P → ∃ 𝑦 𝑦 ∈ 𝐴 ) |
| 30 | 27 29 | syl | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ∃ 𝑦 𝑦 ∈ 𝐴 ) |
| 31 | simprl | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) → 𝑤 ∈ Q ) | |
| 32 | simpl2 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) → 𝑏 ∈ Q ) | |
| 33 | recclnq | ⊢ ( 𝑏 ∈ Q → ( *Q ‘ 𝑏 ) ∈ Q ) | |
| 34 | mulclnq | ⊢ ( ( 𝑤 ∈ Q ∧ ( *Q ‘ 𝑏 ) ∈ Q ) → ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) ∈ Q ) | |
| 35 | archnq | ⊢ ( ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) ∈ Q → ∃ 𝑧 ∈ N ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) | |
| 36 | 34 35 | syl | ⊢ ( ( 𝑤 ∈ Q ∧ ( *Q ‘ 𝑏 ) ∈ Q ) → ∃ 𝑧 ∈ N ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) |
| 37 | 33 36 | sylan2 | ⊢ ( ( 𝑤 ∈ Q ∧ 𝑏 ∈ Q ) → ∃ 𝑧 ∈ N ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) |
| 38 | 31 32 37 | syl2anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) → ∃ 𝑧 ∈ N ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) |
| 39 | simpll2 | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑏 ∈ Q ) | |
| 40 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑤 ∈ Q ) | |
| 41 | simprr | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) | |
| 42 | ltmnq | ⊢ ( 𝑏 ∈ Q → ( ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ↔ ( 𝑏 ·Q ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 𝑏 ·Q 〈 𝑧 , 1o 〉 ) ) ) | |
| 43 | vex | ⊢ 𝑏 ∈ V | |
| 44 | vex | ⊢ 𝑤 ∈ V | |
| 45 | fvex | ⊢ ( *Q ‘ 𝑏 ) ∈ V | |
| 46 | mulcomnq | ⊢ ( 𝑣 ·Q 𝑥 ) = ( 𝑥 ·Q 𝑣 ) | |
| 47 | mulassnq | ⊢ ( ( 𝑣 ·Q 𝑥 ) ·Q 𝑦 ) = ( 𝑣 ·Q ( 𝑥 ·Q 𝑦 ) ) | |
| 48 | 43 44 45 46 47 | caov12 | ⊢ ( 𝑏 ·Q ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) ) = ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) |
| 49 | mulcomnq | ⊢ ( 𝑏 ·Q 〈 𝑧 , 1o 〉 ) = ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) | |
| 50 | 48 49 | breq12i | ⊢ ( ( 𝑏 ·Q ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 𝑏 ·Q 〈 𝑧 , 1o 〉 ) ↔ ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) |
| 51 | 42 50 | bitrdi | ⊢ ( 𝑏 ∈ Q → ( ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ↔ ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 52 | 51 | adantr | ⊢ ( ( 𝑏 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ↔ ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 53 | recidnq | ⊢ ( 𝑏 ∈ Q → ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) = 1Q ) | |
| 54 | 53 | oveq2d | ⊢ ( 𝑏 ∈ Q → ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) = ( 𝑤 ·Q 1Q ) ) |
| 55 | mulidnq | ⊢ ( 𝑤 ∈ Q → ( 𝑤 ·Q 1Q ) = 𝑤 ) | |
| 56 | 54 55 | sylan9eq | ⊢ ( ( 𝑏 ∈ Q ∧ 𝑤 ∈ Q ) → ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) = 𝑤 ) |
| 57 | 56 | breq1d | ⊢ ( ( 𝑏 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ↔ 𝑤 <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 58 | 52 57 | bitrd | ⊢ ( ( 𝑏 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ↔ 𝑤 <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 59 | 58 | biimpa | ⊢ ( ( ( 𝑏 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) → 𝑤 <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) |
| 60 | 39 40 41 59 | syl21anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑤 <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) |
| 61 | simprl | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑧 ∈ N ) | |
| 62 | pinq | ⊢ ( 𝑧 ∈ N → 〈 𝑧 , 1o 〉 ∈ Q ) | |
| 63 | mulclnq | ⊢ ( ( 〈 𝑧 , 1o 〉 ∈ Q ∧ 𝑏 ∈ Q ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∈ Q ) | |
| 64 | 62 63 | sylan | ⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∈ Q ) |
| 65 | 61 39 64 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∈ Q ) |
| 66 | simpll1 | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝐴 ∈ P ) | |
| 67 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑦 ∈ 𝐴 ) | |
| 68 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ Q ) | |
| 69 | 66 67 68 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑦 ∈ Q ) |
| 70 | ltaddnq | ⊢ ( ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) <Q ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑦 ) ) | |
| 71 | addcomnq | ⊢ ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑦 ) = ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) | |
| 72 | 70 71 | breqtrdi | ⊢ ( ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 73 | 65 69 72 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 74 | ltsonq | ⊢ <Q Or Q | |
| 75 | ltrelnq | ⊢ <Q ⊆ ( Q × Q ) | |
| 76 | 74 75 | sotri | ⊢ ( ( 𝑤 <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∧ ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) → 𝑤 <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 77 | 60 73 76 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑤 <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 78 | simpll3 | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) | |
| 79 | opeq1 | ⊢ ( 𝑤 = 1o → 〈 𝑤 , 1o 〉 = 〈 1o , 1o 〉 ) | |
| 80 | df-1nq | ⊢ 1Q = 〈 1o , 1o 〉 | |
| 81 | 79 80 | eqtr4di | ⊢ ( 𝑤 = 1o → 〈 𝑤 , 1o 〉 = 1Q ) |
| 82 | 81 | oveq1d | ⊢ ( 𝑤 = 1o → ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) = ( 1Q ·Q 𝑏 ) ) |
| 83 | 82 | oveq2d | ⊢ ( 𝑤 = 1o → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) = ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ) |
| 84 | 83 | eleq1d | ⊢ ( 𝑤 = 1o → ( ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ↔ ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
| 85 | 84 | imbi2d | ⊢ ( 𝑤 = 1o → ( ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ↔ ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
| 86 | opeq1 | ⊢ ( 𝑤 = 𝑧 → 〈 𝑤 , 1o 〉 = 〈 𝑧 , 1o 〉 ) | |
| 87 | 86 | oveq1d | ⊢ ( 𝑤 = 𝑧 → ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) = ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) |
| 88 | 87 | oveq2d | ⊢ ( 𝑤 = 𝑧 → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) = ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 89 | 88 | eleq1d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ↔ ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
| 90 | 89 | imbi2d | ⊢ ( 𝑤 = 𝑧 → ( ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ↔ ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
| 91 | opeq1 | ⊢ ( 𝑤 = ( 𝑧 +N 1o ) → 〈 𝑤 , 1o 〉 = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) | |
| 92 | 91 | oveq1d | ⊢ ( 𝑤 = ( 𝑧 +N 1o ) → ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) = ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) |
| 93 | 92 | oveq2d | ⊢ ( 𝑤 = ( 𝑧 +N 1o ) → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) = ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ) |
| 94 | 93 | eleq1d | ⊢ ( 𝑤 = ( 𝑧 +N 1o ) → ( ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ↔ ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
| 95 | 94 | imbi2d | ⊢ ( 𝑤 = ( 𝑧 +N 1o ) → ( ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ↔ ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
| 96 | mulcomnq | ⊢ ( 1Q ·Q 𝑏 ) = ( 𝑏 ·Q 1Q ) | |
| 97 | mulidnq | ⊢ ( 𝑏 ∈ Q → ( 𝑏 ·Q 1Q ) = 𝑏 ) | |
| 98 | 96 97 | eqtrid | ⊢ ( 𝑏 ∈ Q → ( 1Q ·Q 𝑏 ) = 𝑏 ) |
| 99 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 +Q 𝑏 ) = ( 𝑦 +Q 𝑏 ) ) | |
| 100 | 99 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ↔ ( 𝑦 +Q 𝑏 ) ∈ 𝐴 ) ) |
| 101 | 100 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q 𝑏 ) ∈ 𝐴 ) |
| 102 | oveq2 | ⊢ ( ( 1Q ·Q 𝑏 ) = 𝑏 → ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) = ( 𝑦 +Q 𝑏 ) ) | |
| 103 | 102 | eleq1d | ⊢ ( ( 1Q ·Q 𝑏 ) = 𝑏 → ( ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ↔ ( 𝑦 +Q 𝑏 ) ∈ 𝐴 ) ) |
| 104 | 103 | biimpar | ⊢ ( ( ( 1Q ·Q 𝑏 ) = 𝑏 ∧ ( 𝑦 +Q 𝑏 ) ∈ 𝐴 ) → ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ) |
| 105 | 98 101 104 | syl2an | ⊢ ( ( 𝑏 ∈ Q ∧ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ) |
| 106 | 105 | 3impb | ⊢ ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ) |
| 107 | 3simpa | ⊢ ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ) | |
| 108 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) → ( 𝑥 +Q 𝑏 ) = ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) ) | |
| 109 | 108 | eleq1d | ⊢ ( 𝑥 = ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) → ( ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ↔ ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) ∈ 𝐴 ) ) |
| 110 | 109 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) → ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) ∈ 𝐴 ) |
| 111 | addassnq | ⊢ ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) = ( 𝑦 +Q ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑏 ) ) | |
| 112 | opex | ⊢ 〈 𝑧 , 1o 〉 ∈ V | |
| 113 | 1nq | ⊢ 1Q ∈ Q | |
| 114 | 113 | elexi | ⊢ 1Q ∈ V |
| 115 | distrnq | ⊢ ( 𝑣 ·Q ( 𝑥 +Q 𝑦 ) ) = ( ( 𝑣 ·Q 𝑥 ) +Q ( 𝑣 ·Q 𝑦 ) ) | |
| 116 | 112 114 43 46 115 | caovdir | ⊢ ( ( 〈 𝑧 , 1o 〉 +Q 1Q ) ·Q 𝑏 ) = ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q ( 1Q ·Q 𝑏 ) ) |
| 117 | 116 | a1i | ⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( 〈 𝑧 , 1o 〉 +Q 1Q ) ·Q 𝑏 ) = ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q ( 1Q ·Q 𝑏 ) ) ) |
| 118 | addpqnq | ⊢ ( ( 〈 𝑧 , 1o 〉 ∈ Q ∧ 1Q ∈ Q ) → ( 〈 𝑧 , 1o 〉 +Q 1Q ) = ( [Q] ‘ ( 〈 𝑧 , 1o 〉 +pQ 1Q ) ) ) | |
| 119 | 62 113 118 | sylancl | ⊢ ( 𝑧 ∈ N → ( 〈 𝑧 , 1o 〉 +Q 1Q ) = ( [Q] ‘ ( 〈 𝑧 , 1o 〉 +pQ 1Q ) ) ) |
| 120 | 80 | oveq2i | ⊢ ( 〈 𝑧 , 1o 〉 +pQ 1Q ) = ( 〈 𝑧 , 1o 〉 +pQ 〈 1o , 1o 〉 ) |
| 121 | 1pi | ⊢ 1o ∈ N | |
| 122 | addpipq | ⊢ ( ( ( 𝑧 ∈ N ∧ 1o ∈ N ) ∧ ( 1o ∈ N ∧ 1o ∈ N ) ) → ( 〈 𝑧 , 1o 〉 +pQ 〈 1o , 1o 〉 ) = 〈 ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 ) | |
| 123 | 121 121 122 | mpanr12 | ⊢ ( ( 𝑧 ∈ N ∧ 1o ∈ N ) → ( 〈 𝑧 , 1o 〉 +pQ 〈 1o , 1o 〉 ) = 〈 ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 ) |
| 124 | 121 123 | mpan2 | ⊢ ( 𝑧 ∈ N → ( 〈 𝑧 , 1o 〉 +pQ 〈 1o , 1o 〉 ) = 〈 ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 ) |
| 125 | 120 124 | eqtrid | ⊢ ( 𝑧 ∈ N → ( 〈 𝑧 , 1o 〉 +pQ 1Q ) = 〈 ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 ) |
| 126 | mulidpi | ⊢ ( 𝑧 ∈ N → ( 𝑧 ·N 1o ) = 𝑧 ) | |
| 127 | mulidpi | ⊢ ( 1o ∈ N → ( 1o ·N 1o ) = 1o ) | |
| 128 | 121 127 | mp1i | ⊢ ( 𝑧 ∈ N → ( 1o ·N 1o ) = 1o ) |
| 129 | 126 128 | oveq12d | ⊢ ( 𝑧 ∈ N → ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) = ( 𝑧 +N 1o ) ) |
| 130 | 129 128 | opeq12d | ⊢ ( 𝑧 ∈ N → 〈 ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
| 131 | 125 130 | eqtrd | ⊢ ( 𝑧 ∈ N → ( 〈 𝑧 , 1o 〉 +pQ 1Q ) = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
| 132 | 131 | fveq2d | ⊢ ( 𝑧 ∈ N → ( [Q] ‘ ( 〈 𝑧 , 1o 〉 +pQ 1Q ) ) = ( [Q] ‘ 〈 ( 𝑧 +N 1o ) , 1o 〉 ) ) |
| 133 | addclpi | ⊢ ( ( 𝑧 ∈ N ∧ 1o ∈ N ) → ( 𝑧 +N 1o ) ∈ N ) | |
| 134 | 121 133 | mpan2 | ⊢ ( 𝑧 ∈ N → ( 𝑧 +N 1o ) ∈ N ) |
| 135 | pinq | ⊢ ( ( 𝑧 +N 1o ) ∈ N → 〈 ( 𝑧 +N 1o ) , 1o 〉 ∈ Q ) | |
| 136 | nqerid | ⊢ ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ∈ Q → ( [Q] ‘ 〈 ( 𝑧 +N 1o ) , 1o 〉 ) = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) | |
| 137 | 134 135 136 | 3syl | ⊢ ( 𝑧 ∈ N → ( [Q] ‘ 〈 ( 𝑧 +N 1o ) , 1o 〉 ) = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
| 138 | 119 132 137 | 3eqtrd | ⊢ ( 𝑧 ∈ N → ( 〈 𝑧 , 1o 〉 +Q 1Q ) = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
| 139 | 138 | adantr | ⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( 〈 𝑧 , 1o 〉 +Q 1Q ) = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
| 140 | 139 | oveq1d | ⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( 〈 𝑧 , 1o 〉 +Q 1Q ) ·Q 𝑏 ) = ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) |
| 141 | 98 | adantl | ⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( 1Q ·Q 𝑏 ) = 𝑏 ) |
| 142 | 141 | oveq2d | ⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q ( 1Q ·Q 𝑏 ) ) = ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑏 ) ) |
| 143 | 117 140 142 | 3eqtr3rd | ⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑏 ) = ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) |
| 144 | 143 | oveq2d | ⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( 𝑦 +Q ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑏 ) ) = ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ) |
| 145 | 111 144 | eqtrid | ⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) = ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ) |
| 146 | 145 | eleq1d | ⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) ∈ 𝐴 ↔ ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
| 147 | 110 146 | imbitrid | ⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
| 148 | 147 | expd | ⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 → ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
| 149 | 148 | expimpd | ⊢ ( 𝑧 ∈ N → ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) → ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
| 150 | 107 149 | syl5 | ⊢ ( 𝑧 ∈ N → ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
| 151 | 150 | a2d | ⊢ ( 𝑧 ∈ N → ( ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) → ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
| 152 | 85 90 95 90 106 151 | indpi | ⊢ ( 𝑧 ∈ N → ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
| 153 | 152 | imp | ⊢ ( ( 𝑧 ∈ N ∧ ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) |
| 154 | 61 39 78 67 153 | syl13anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) |
| 155 | prcdnq | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) → ( 𝑤 <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) → 𝑤 ∈ 𝐴 ) ) | |
| 156 | 66 154 155 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ( 𝑤 <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) → 𝑤 ∈ 𝐴 ) ) |
| 157 | 77 156 | mpd | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑤 ∈ 𝐴 ) |
| 158 | 38 157 | rexlimddv | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) → 𝑤 ∈ 𝐴 ) |
| 159 | 158 | expr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ( 𝑦 ∈ 𝐴 → 𝑤 ∈ 𝐴 ) ) |
| 160 | 159 | exlimdv | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ( ∃ 𝑦 𝑦 ∈ 𝐴 → 𝑤 ∈ 𝐴 ) ) |
| 161 | 30 160 | mpd | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → 𝑤 ∈ 𝐴 ) |
| 162 | 26 161 | eqelssd | ⊢ ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) → 𝐴 = Q ) |
| 163 | 162 | 3expia | ⊢ ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 → 𝐴 = Q ) ) |
| 164 | 25 163 | mtod | ⊢ ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ) → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) |
| 165 | 164 | expcom | ⊢ ( 𝑏 ∈ Q → ( 𝐴 ∈ P → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ) |
| 166 | 21 165 | vtoclga | ⊢ ( 𝐵 ∈ Q → ( 𝐴 ∈ P → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 167 | 166 | com12 | ⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ Q → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 168 | 5 16 167 | 3syld | ⊢ ( 𝐴 ∈ P → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 169 | 168 | pm2.01d | ⊢ ( 𝐴 ∈ P → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) |
| 170 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) | |
| 171 | 169 170 | sylibr | ⊢ ( 𝐴 ∈ P → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) |