This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of nqereu : the function /Q acts as the identity on members of Q. . (Contributed by Mario Carneiro, 6-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nqerid | ⊢ ( 𝐴 ∈ Q → ( [Q] ‘ 𝐴 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqerf | ⊢ [Q] : ( N × N ) ⟶ Q | |
| 2 | ffun | ⊢ ( [Q] : ( N × N ) ⟶ Q → Fun [Q] ) | |
| 3 | 1 2 | ax-mp | ⊢ Fun [Q] |
| 4 | elpqn | ⊢ ( 𝐴 ∈ Q → 𝐴 ∈ ( N × N ) ) | |
| 5 | id | ⊢ ( 𝐴 ∈ Q → 𝐴 ∈ Q ) | |
| 6 | enqer | ⊢ ~Q Er ( N × N ) | |
| 7 | 6 | a1i | ⊢ ( 𝐴 ∈ Q → ~Q Er ( N × N ) ) |
| 8 | 7 4 | erref | ⊢ ( 𝐴 ∈ Q → 𝐴 ~Q 𝐴 ) |
| 9 | df-erq | ⊢ [Q] = ( ~Q ∩ ( ( N × N ) × Q ) ) | |
| 10 | 9 | breqi | ⊢ ( 𝐴 [Q] 𝐴 ↔ 𝐴 ( ~Q ∩ ( ( N × N ) × Q ) ) 𝐴 ) |
| 11 | brinxp2 | ⊢ ( 𝐴 ( ~Q ∩ ( ( N × N ) × Q ) ) 𝐴 ↔ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐴 ∈ Q ) ∧ 𝐴 ~Q 𝐴 ) ) | |
| 12 | 10 11 | bitri | ⊢ ( 𝐴 [Q] 𝐴 ↔ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐴 ∈ Q ) ∧ 𝐴 ~Q 𝐴 ) ) |
| 13 | 4 5 8 12 | syl21anbrc | ⊢ ( 𝐴 ∈ Q → 𝐴 [Q] 𝐴 ) |
| 14 | funbrfv | ⊢ ( Fun [Q] → ( 𝐴 [Q] 𝐴 → ( [Q] ‘ 𝐴 ) = 𝐴 ) ) | |
| 15 | 3 13 14 | mpsyl | ⊢ ( 𝐴 ∈ Q → ( [Q] ‘ 𝐴 ) = 𝐴 ) |