This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of Gleason p. 123. (Contributed by NM, 26-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltaddpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → 𝐴 <P ( 𝐴 +P 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prn0 | ⊢ ( 𝐵 ∈ P → 𝐵 ≠ ∅ ) | |
| 2 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐵 ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐵 ∈ P → ∃ 𝑦 𝑦 ∈ 𝐵 ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ∃ 𝑦 𝑦 ∈ 𝐵 ) |
| 5 | addclpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 +P 𝐵 ) ∈ P ) | |
| 6 | df-plp | ⊢ +P = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 +Q 𝑧 ) } ) | |
| 7 | addclnq | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 +Q 𝑧 ) ∈ Q ) | |
| 8 | 6 7 | genpprecl | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 +Q 𝑦 ) ∈ ( 𝐴 +P 𝐵 ) ) ) |
| 9 | 8 | imp | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 +Q 𝑦 ) ∈ ( 𝐴 +P 𝐵 ) ) |
| 10 | elprnq | ⊢ ( ( ( 𝐴 +P 𝐵 ) ∈ P ∧ ( 𝑥 +Q 𝑦 ) ∈ ( 𝐴 +P 𝐵 ) ) → ( 𝑥 +Q 𝑦 ) ∈ Q ) | |
| 11 | addnqf | ⊢ +Q : ( Q × Q ) ⟶ Q | |
| 12 | 11 | fdmi | ⊢ dom +Q = ( Q × Q ) |
| 13 | 0nnq | ⊢ ¬ ∅ ∈ Q | |
| 14 | 12 13 | ndmovrcl | ⊢ ( ( 𝑥 +Q 𝑦 ) ∈ Q → ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ) |
| 15 | ltaddnq | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → 𝑥 <Q ( 𝑥 +Q 𝑦 ) ) | |
| 16 | 10 14 15 | 3syl | ⊢ ( ( ( 𝐴 +P 𝐵 ) ∈ P ∧ ( 𝑥 +Q 𝑦 ) ∈ ( 𝐴 +P 𝐵 ) ) → 𝑥 <Q ( 𝑥 +Q 𝑦 ) ) |
| 17 | prcdnq | ⊢ ( ( ( 𝐴 +P 𝐵 ) ∈ P ∧ ( 𝑥 +Q 𝑦 ) ∈ ( 𝐴 +P 𝐵 ) ) → ( 𝑥 <Q ( 𝑥 +Q 𝑦 ) → 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) ) | |
| 18 | 16 17 | mpd | ⊢ ( ( ( 𝐴 +P 𝐵 ) ∈ P ∧ ( 𝑥 +Q 𝑦 ) ∈ ( 𝐴 +P 𝐵 ) ) → 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) |
| 19 | 5 9 18 | syl2an2r | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) |
| 20 | 19 | exp32 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) ) ) |
| 21 | 20 | com23 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) ) ) |
| 22 | 21 | alrimdv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑦 ∈ 𝐵 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) ) ) |
| 23 | df-ss | ⊢ ( 𝐴 ⊆ ( 𝐴 +P 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) ) | |
| 24 | 22 23 | imbitrrdi | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑦 ∈ 𝐵 → 𝐴 ⊆ ( 𝐴 +P 𝐵 ) ) ) |
| 25 | vex | ⊢ 𝑦 ∈ V | |
| 26 | 25 | prlem934 | ⊢ ( 𝐴 ∈ P → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝑦 ) ∈ 𝐴 ) |
| 27 | 26 | adantr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝑦 ) ∈ 𝐴 ) |
| 28 | eleq2 | ⊢ ( 𝐴 = ( 𝐴 +P 𝐵 ) → ( ( 𝑥 +Q 𝑦 ) ∈ 𝐴 ↔ ( 𝑥 +Q 𝑦 ) ∈ ( 𝐴 +P 𝐵 ) ) ) | |
| 29 | 28 | biimprcd | ⊢ ( ( 𝑥 +Q 𝑦 ) ∈ ( 𝐴 +P 𝐵 ) → ( 𝐴 = ( 𝐴 +P 𝐵 ) → ( 𝑥 +Q 𝑦 ) ∈ 𝐴 ) ) |
| 30 | 29 | con3d | ⊢ ( ( 𝑥 +Q 𝑦 ) ∈ ( 𝐴 +P 𝐵 ) → ( ¬ ( 𝑥 +Q 𝑦 ) ∈ 𝐴 → ¬ 𝐴 = ( 𝐴 +P 𝐵 ) ) ) |
| 31 | 8 30 | syl6 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ¬ ( 𝑥 +Q 𝑦 ) ∈ 𝐴 → ¬ 𝐴 = ( 𝐴 +P 𝐵 ) ) ) ) |
| 32 | 31 | expd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ( ¬ ( 𝑥 +Q 𝑦 ) ∈ 𝐴 → ¬ 𝐴 = ( 𝐴 +P 𝐵 ) ) ) ) ) |
| 33 | 32 | com34 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑥 ∈ 𝐴 → ( ¬ ( 𝑥 +Q 𝑦 ) ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ¬ 𝐴 = ( 𝐴 +P 𝐵 ) ) ) ) ) |
| 34 | 33 | rexlimdv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝑦 ) ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ¬ 𝐴 = ( 𝐴 +P 𝐵 ) ) ) ) |
| 35 | 27 34 | mpd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑦 ∈ 𝐵 → ¬ 𝐴 = ( 𝐴 +P 𝐵 ) ) ) |
| 36 | 24 35 | jcad | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑦 ∈ 𝐵 → ( 𝐴 ⊆ ( 𝐴 +P 𝐵 ) ∧ ¬ 𝐴 = ( 𝐴 +P 𝐵 ) ) ) ) |
| 37 | dfpss2 | ⊢ ( 𝐴 ⊊ ( 𝐴 +P 𝐵 ) ↔ ( 𝐴 ⊆ ( 𝐴 +P 𝐵 ) ∧ ¬ 𝐴 = ( 𝐴 +P 𝐵 ) ) ) | |
| 38 | 36 37 | imbitrrdi | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑦 ∈ 𝐵 → 𝐴 ⊊ ( 𝐴 +P 𝐵 ) ) ) |
| 39 | 38 | exlimdv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑦 𝑦 ∈ 𝐵 → 𝐴 ⊊ ( 𝐴 +P 𝐵 ) ) ) |
| 40 | 4 39 | mpd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → 𝐴 ⊊ ( 𝐴 +P 𝐵 ) ) |
| 41 | ltprord | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐴 +P 𝐵 ) ∈ P ) → ( 𝐴 <P ( 𝐴 +P 𝐵 ) ↔ 𝐴 ⊊ ( 𝐴 +P 𝐵 ) ) ) | |
| 42 | 5 41 | syldan | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 <P ( 𝐴 +P 𝐵 ) ↔ 𝐴 ⊊ ( 𝐴 +P 𝐵 ) ) ) |
| 43 | 40 42 | mpbird | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → 𝐴 <P ( 𝐴 +P 𝐵 ) ) |