This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive real is not empty. (Contributed by NM, 15-May-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prn0 | ⊢ ( 𝐴 ∈ P → 𝐴 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnpi | ⊢ ( 𝐴 ∈ P ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) | |
| 2 | simpl2 | ⊢ ( ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) → ∅ ⊊ 𝐴 ) | |
| 3 | 1 2 | sylbi | ⊢ ( 𝐴 ∈ P → ∅ ⊊ 𝐴 ) |
| 4 | 0pss | ⊢ ( ∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅ ) | |
| 5 | 3 4 | sylib | ⊢ ( 𝐴 ∈ P → 𝐴 ≠ ∅ ) |