This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995) (Revised by Mario Carneiro, 10-Jul-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addnqf | ⊢ +Q : ( Q × Q ) ⟶ Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqerf | ⊢ [Q] : ( N × N ) ⟶ Q | |
| 2 | addpqf | ⊢ +pQ : ( ( N × N ) × ( N × N ) ) ⟶ ( N × N ) | |
| 3 | fco | ⊢ ( ( [Q] : ( N × N ) ⟶ Q ∧ +pQ : ( ( N × N ) × ( N × N ) ) ⟶ ( N × N ) ) → ( [Q] ∘ +pQ ) : ( ( N × N ) × ( N × N ) ) ⟶ Q ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( [Q] ∘ +pQ ) : ( ( N × N ) × ( N × N ) ) ⟶ Q |
| 5 | elpqn | ⊢ ( 𝑥 ∈ Q → 𝑥 ∈ ( N × N ) ) | |
| 6 | 5 | ssriv | ⊢ Q ⊆ ( N × N ) |
| 7 | xpss12 | ⊢ ( ( Q ⊆ ( N × N ) ∧ Q ⊆ ( N × N ) ) → ( Q × Q ) ⊆ ( ( N × N ) × ( N × N ) ) ) | |
| 8 | 6 6 7 | mp2an | ⊢ ( Q × Q ) ⊆ ( ( N × N ) × ( N × N ) ) |
| 9 | fssres | ⊢ ( ( ( [Q] ∘ +pQ ) : ( ( N × N ) × ( N × N ) ) ⟶ Q ∧ ( Q × Q ) ⊆ ( ( N × N ) × ( N × N ) ) ) → ( ( [Q] ∘ +pQ ) ↾ ( Q × Q ) ) : ( Q × Q ) ⟶ Q ) | |
| 10 | 4 8 9 | mp2an | ⊢ ( ( [Q] ∘ +pQ ) ↾ ( Q × Q ) ) : ( Q × Q ) ⟶ Q |
| 11 | df-plq | ⊢ +Q = ( ( [Q] ∘ +pQ ) ↾ ( Q × Q ) ) | |
| 12 | 11 | feq1i | ⊢ ( +Q : ( Q × Q ) ⟶ Q ↔ ( ( [Q] ∘ +pQ ) ↾ ( Q × Q ) ) : ( Q × Q ) ⟶ Q ) |
| 13 | 10 12 | mpbir | ⊢ +Q : ( Q × Q ) ⟶ Q |