This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995) (Revised by Mario Carneiro, 26-Dec-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addpqnq | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐴 +Q 𝐵 ) = ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plq | ⊢ +Q = ( ( [Q] ∘ +pQ ) ↾ ( Q × Q ) ) | |
| 2 | 1 | fveq1i | ⊢ ( +Q ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( ( [Q] ∘ +pQ ) ↾ ( Q × Q ) ) ‘ 〈 𝐴 , 𝐵 〉 ) |
| 3 | 2 | a1i | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( +Q ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( ( [Q] ∘ +pQ ) ↾ ( Q × Q ) ) ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 4 | opelxpi | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → 〈 𝐴 , 𝐵 〉 ∈ ( Q × Q ) ) | |
| 5 | 4 | fvresd | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( ( ( [Q] ∘ +pQ ) ↾ ( Q × Q ) ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( [Q] ∘ +pQ ) ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 6 | df-plpq | ⊢ +pQ = ( 𝑥 ∈ ( N × N ) , 𝑦 ∈ ( N × N ) ↦ 〈 ( ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) +N ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) ) , ( ( 2nd ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) 〉 ) | |
| 7 | opex | ⊢ 〈 ( ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) +N ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) ) , ( ( 2nd ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) 〉 ∈ V | |
| 8 | 6 7 | fnmpoi | ⊢ +pQ Fn ( ( N × N ) × ( N × N ) ) |
| 9 | elpqn | ⊢ ( 𝐴 ∈ Q → 𝐴 ∈ ( N × N ) ) | |
| 10 | elpqn | ⊢ ( 𝐵 ∈ Q → 𝐵 ∈ ( N × N ) ) | |
| 11 | opelxpi | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → 〈 𝐴 , 𝐵 〉 ∈ ( ( N × N ) × ( N × N ) ) ) | |
| 12 | 9 10 11 | syl2an | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → 〈 𝐴 , 𝐵 〉 ∈ ( ( N × N ) × ( N × N ) ) ) |
| 13 | fvco2 | ⊢ ( ( +pQ Fn ( ( N × N ) × ( N × N ) ) ∧ 〈 𝐴 , 𝐵 〉 ∈ ( ( N × N ) × ( N × N ) ) ) → ( ( [Q] ∘ +pQ ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( [Q] ‘ ( +pQ ‘ 〈 𝐴 , 𝐵 〉 ) ) ) | |
| 14 | 8 12 13 | sylancr | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( ( [Q] ∘ +pQ ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( [Q] ‘ ( +pQ ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 15 | 3 5 14 | 3eqtrd | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( +Q ‘ 〈 𝐴 , 𝐵 〉 ) = ( [Q] ‘ ( +pQ ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 16 | df-ov | ⊢ ( 𝐴 +Q 𝐵 ) = ( +Q ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 17 | df-ov | ⊢ ( 𝐴 +pQ 𝐵 ) = ( +pQ ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 18 | 17 | fveq2i | ⊢ ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) = ( [Q] ‘ ( +pQ ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 19 | 15 16 18 | 3eqtr4g | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐴 +Q 𝐵 ) = ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) ) |