This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of Finite Induction on positive integers. (Contributed by NM, 23-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indpi.1 | ⊢ ( 𝑥 = 1o → ( 𝜑 ↔ 𝜓 ) ) | |
| indpi.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | ||
| indpi.3 | ⊢ ( 𝑥 = ( 𝑦 +N 1o ) → ( 𝜑 ↔ 𝜃 ) ) | ||
| indpi.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | ||
| indpi.5 | ⊢ 𝜓 | ||
| indpi.6 | ⊢ ( 𝑦 ∈ N → ( 𝜒 → 𝜃 ) ) | ||
| Assertion | indpi | ⊢ ( 𝐴 ∈ N → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indpi.1 | ⊢ ( 𝑥 = 1o → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | indpi.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | indpi.3 | ⊢ ( 𝑥 = ( 𝑦 +N 1o ) → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | indpi.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | indpi.5 | ⊢ 𝜓 | |
| 6 | indpi.6 | ⊢ ( 𝑦 ∈ N → ( 𝜒 → 𝜃 ) ) | |
| 7 | 1oex | ⊢ 1o ∈ V | |
| 8 | 7 | eqvinc | ⊢ ( 1o = 𝐴 ↔ ∃ 𝑥 ( 𝑥 = 1o ∧ 𝑥 = 𝐴 ) ) |
| 9 | 5 1 | mpbiri | ⊢ ( 𝑥 = 1o → 𝜑 ) |
| 10 | 8 4 9 | gencl | ⊢ ( 1o = 𝐴 → 𝜏 ) |
| 11 | 10 | eqcoms | ⊢ ( 𝐴 = 1o → 𝜏 ) |
| 12 | 11 | a1i | ⊢ ( 𝐴 ∈ N → ( 𝐴 = 1o → 𝜏 ) ) |
| 13 | pinn | ⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) | |
| 14 | elni2 | ⊢ ( 𝐴 ∈ N ↔ ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ) | |
| 15 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 16 | ordsucss | ⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 → suc ∅ ⊆ 𝐴 ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝐴 ∈ ω → ( ∅ ∈ 𝐴 → suc ∅ ⊆ 𝐴 ) ) |
| 18 | df-1o | ⊢ 1o = suc ∅ | |
| 19 | 18 | sseq1i | ⊢ ( 1o ⊆ 𝐴 ↔ suc ∅ ⊆ 𝐴 ) |
| 20 | 17 19 | imbitrrdi | ⊢ ( 𝐴 ∈ ω → ( ∅ ∈ 𝐴 → 1o ⊆ 𝐴 ) ) |
| 21 | 20 | imp | ⊢ ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) → 1o ⊆ 𝐴 ) |
| 22 | 14 21 | sylbi | ⊢ ( 𝐴 ∈ N → 1o ⊆ 𝐴 ) |
| 23 | 1onn | ⊢ 1o ∈ ω | |
| 24 | eleq1 | ⊢ ( 𝑥 = 1o → ( 𝑥 ∈ N ↔ 1o ∈ N ) ) | |
| 25 | breq2 | ⊢ ( 𝑥 = 1o → ( 1o <N 𝑥 ↔ 1o <N 1o ) ) | |
| 26 | 24 25 | anbi12d | ⊢ ( 𝑥 = 1o → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) ↔ ( 1o ∈ N ∧ 1o <N 1o ) ) ) |
| 27 | 26 1 | imbi12d | ⊢ ( 𝑥 = 1o → ( ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝜑 ) ↔ ( ( 1o ∈ N ∧ 1o <N 1o ) → 𝜓 ) ) ) |
| 28 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ N ↔ 𝑦 ∈ N ) ) | |
| 29 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( 1o <N 𝑥 ↔ 1o <N 𝑦 ) ) | |
| 30 | 28 29 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) ↔ ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) ) ) |
| 31 | 30 2 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝜑 ) ↔ ( ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) → 𝜒 ) ) ) |
| 32 | pinn | ⊢ ( 𝑥 ∈ N → 𝑥 ∈ ω ) | |
| 33 | eleq1 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ ω ↔ suc 𝑦 ∈ ω ) ) | |
| 34 | peano2b | ⊢ ( 𝑦 ∈ ω ↔ suc 𝑦 ∈ ω ) | |
| 35 | 33 34 | bitr4di | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ ω ↔ 𝑦 ∈ ω ) ) |
| 36 | 32 35 | imbitrid | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ N → 𝑦 ∈ ω ) ) |
| 37 | 36 | adantrd | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝑦 ∈ ω ) ) |
| 38 | 1pi | ⊢ 1o ∈ N | |
| 39 | ltpiord | ⊢ ( ( 1o ∈ N ∧ 𝑥 ∈ N ) → ( 1o <N 𝑥 ↔ 1o ∈ 𝑥 ) ) | |
| 40 | 38 39 | mpan | ⊢ ( 𝑥 ∈ N → ( 1o <N 𝑥 ↔ 1o ∈ 𝑥 ) ) |
| 41 | 40 | biimpa | ⊢ ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 1o ∈ 𝑥 ) |
| 42 | eleq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 1o ∈ 𝑥 ↔ 1o ∈ suc 𝑦 ) ) | |
| 43 | elsuci | ⊢ ( 1o ∈ suc 𝑦 → ( 1o ∈ 𝑦 ∨ 1o = 𝑦 ) ) | |
| 44 | ne0i | ⊢ ( 1o ∈ 𝑦 → 𝑦 ≠ ∅ ) | |
| 45 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 46 | eleq2 | ⊢ ( 1o = 𝑦 → ( ∅ ∈ 1o ↔ ∅ ∈ 𝑦 ) ) | |
| 47 | 45 46 | mpbii | ⊢ ( 1o = 𝑦 → ∅ ∈ 𝑦 ) |
| 48 | 47 | ne0d | ⊢ ( 1o = 𝑦 → 𝑦 ≠ ∅ ) |
| 49 | 44 48 | jaoi | ⊢ ( ( 1o ∈ 𝑦 ∨ 1o = 𝑦 ) → 𝑦 ≠ ∅ ) |
| 50 | 43 49 | syl | ⊢ ( 1o ∈ suc 𝑦 → 𝑦 ≠ ∅ ) |
| 51 | 42 50 | biimtrdi | ⊢ ( 𝑥 = suc 𝑦 → ( 1o ∈ 𝑥 → 𝑦 ≠ ∅ ) ) |
| 52 | 41 51 | syl5 | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝑦 ≠ ∅ ) ) |
| 53 | 37 52 | jcad | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → ( 𝑦 ∈ ω ∧ 𝑦 ≠ ∅ ) ) ) |
| 54 | elni | ⊢ ( 𝑦 ∈ N ↔ ( 𝑦 ∈ ω ∧ 𝑦 ≠ ∅ ) ) | |
| 55 | 53 54 | imbitrrdi | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝑦 ∈ N ) ) |
| 56 | simpr | ⊢ ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 1o <N 𝑥 ) | |
| 57 | breq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 1o <N 𝑥 ↔ 1o <N suc 𝑦 ) ) | |
| 58 | 56 57 | imbitrid | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 1o <N suc 𝑦 ) ) |
| 59 | 55 58 | jcad | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) ) ) |
| 60 | addclpi | ⊢ ( ( 𝑦 ∈ N ∧ 1o ∈ N ) → ( 𝑦 +N 1o ) ∈ N ) | |
| 61 | 38 60 | mpan2 | ⊢ ( 𝑦 ∈ N → ( 𝑦 +N 1o ) ∈ N ) |
| 62 | addpiord | ⊢ ( ( 𝑦 ∈ N ∧ 1o ∈ N ) → ( 𝑦 +N 1o ) = ( 𝑦 +o 1o ) ) | |
| 63 | 38 62 | mpan2 | ⊢ ( 𝑦 ∈ N → ( 𝑦 +N 1o ) = ( 𝑦 +o 1o ) ) |
| 64 | pion | ⊢ ( 𝑦 ∈ N → 𝑦 ∈ On ) | |
| 65 | oa1suc | ⊢ ( 𝑦 ∈ On → ( 𝑦 +o 1o ) = suc 𝑦 ) | |
| 66 | 64 65 | syl | ⊢ ( 𝑦 ∈ N → ( 𝑦 +o 1o ) = suc 𝑦 ) |
| 67 | 63 66 | eqtrd | ⊢ ( 𝑦 ∈ N → ( 𝑦 +N 1o ) = suc 𝑦 ) |
| 68 | 67 | eqeq2d | ⊢ ( 𝑦 ∈ N → ( 𝑥 = ( 𝑦 +N 1o ) ↔ 𝑥 = suc 𝑦 ) ) |
| 69 | 68 | biimparc | ⊢ ( ( 𝑥 = suc 𝑦 ∧ 𝑦 ∈ N ) → 𝑥 = ( 𝑦 +N 1o ) ) |
| 70 | 69 | eleq1d | ⊢ ( ( 𝑥 = suc 𝑦 ∧ 𝑦 ∈ N ) → ( 𝑥 ∈ N ↔ ( 𝑦 +N 1o ) ∈ N ) ) |
| 71 | 61 70 | imbitrrid | ⊢ ( ( 𝑥 = suc 𝑦 ∧ 𝑦 ∈ N ) → ( 𝑦 ∈ N → 𝑥 ∈ N ) ) |
| 72 | 71 | ex | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑦 ∈ N → ( 𝑦 ∈ N → 𝑥 ∈ N ) ) ) |
| 73 | 72 | pm2.43d | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑦 ∈ N → 𝑥 ∈ N ) ) |
| 74 | 57 | biimprd | ⊢ ( 𝑥 = suc 𝑦 → ( 1o <N suc 𝑦 → 1o <N 𝑥 ) ) |
| 75 | 73 74 | anim12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) ) ) |
| 76 | 59 75 | impbid | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) ↔ ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) ) ) |
| 77 | 76 | imbi1d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝜑 ) ↔ ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → 𝜑 ) ) ) |
| 78 | 68 3 | biimtrrdi | ⊢ ( 𝑦 ∈ N → ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) ) |
| 79 | 78 | adantr | ⊢ ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) ) |
| 80 | 79 | com12 | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → ( 𝜑 ↔ 𝜃 ) ) ) |
| 81 | 80 | pm5.74d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → 𝜑 ) ↔ ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → 𝜃 ) ) ) |
| 82 | 77 81 | bitrd | ⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝜑 ) ↔ ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → 𝜃 ) ) ) |
| 83 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ N ↔ 𝐴 ∈ N ) ) | |
| 84 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 1o <N 𝑥 ↔ 1o <N 𝐴 ) ) | |
| 85 | 83 84 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) ↔ ( 𝐴 ∈ N ∧ 1o <N 𝐴 ) ) ) |
| 86 | 85 4 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝜑 ) ↔ ( ( 𝐴 ∈ N ∧ 1o <N 𝐴 ) → 𝜏 ) ) ) |
| 87 | 5 | 2a1i | ⊢ ( 1o ∈ ω → ( ( 1o ∈ N ∧ 1o <N 1o ) → 𝜓 ) ) |
| 88 | ltpiord | ⊢ ( ( 1o ∈ N ∧ 𝑦 ∈ N ) → ( 1o <N 𝑦 ↔ 1o ∈ 𝑦 ) ) | |
| 89 | 38 88 | mpan | ⊢ ( 𝑦 ∈ N → ( 1o <N 𝑦 ↔ 1o ∈ 𝑦 ) ) |
| 90 | 89 | pm5.32i | ⊢ ( ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) ↔ ( 𝑦 ∈ N ∧ 1o ∈ 𝑦 ) ) |
| 91 | 90 | simplbi2 | ⊢ ( 𝑦 ∈ N → ( 1o ∈ 𝑦 → ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) ) ) |
| 92 | 91 | imim1d | ⊢ ( 𝑦 ∈ N → ( ( ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) → 𝜒 ) → ( 1o ∈ 𝑦 → 𝜒 ) ) ) |
| 93 | ltrelpi | ⊢ <N ⊆ ( N × N ) | |
| 94 | 93 | brel | ⊢ ( 1o <N suc 𝑦 → ( 1o ∈ N ∧ suc 𝑦 ∈ N ) ) |
| 95 | ltpiord | ⊢ ( ( 1o ∈ N ∧ suc 𝑦 ∈ N ) → ( 1o <N suc 𝑦 ↔ 1o ∈ suc 𝑦 ) ) | |
| 96 | 94 95 | syl | ⊢ ( 1o <N suc 𝑦 → ( 1o <N suc 𝑦 ↔ 1o ∈ suc 𝑦 ) ) |
| 97 | 96 | ibi | ⊢ ( 1o <N suc 𝑦 → 1o ∈ suc 𝑦 ) |
| 98 | 7 | eqvinc | ⊢ ( 1o = 𝑦 ↔ ∃ 𝑥 ( 𝑥 = 1o ∧ 𝑥 = 𝑦 ) ) |
| 99 | 98 2 9 | gencl | ⊢ ( 1o = 𝑦 → 𝜒 ) |
| 100 | jao | ⊢ ( ( 1o ∈ 𝑦 → 𝜒 ) → ( ( 1o = 𝑦 → 𝜒 ) → ( ( 1o ∈ 𝑦 ∨ 1o = 𝑦 ) → 𝜒 ) ) ) | |
| 101 | 99 100 | mpi | ⊢ ( ( 1o ∈ 𝑦 → 𝜒 ) → ( ( 1o ∈ 𝑦 ∨ 1o = 𝑦 ) → 𝜒 ) ) |
| 102 | 43 101 | syl5 | ⊢ ( ( 1o ∈ 𝑦 → 𝜒 ) → ( 1o ∈ suc 𝑦 → 𝜒 ) ) |
| 103 | 97 102 | syl5 | ⊢ ( ( 1o ∈ 𝑦 → 𝜒 ) → ( 1o <N suc 𝑦 → 𝜒 ) ) |
| 104 | 92 103 | syl6com | ⊢ ( ( ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) → 𝜒 ) → ( 𝑦 ∈ N → ( 1o <N suc 𝑦 → 𝜒 ) ) ) |
| 105 | 104 | impd | ⊢ ( ( ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) → 𝜒 ) → ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → 𝜒 ) ) |
| 106 | 18 | sseq1i | ⊢ ( 1o ⊆ 𝑦 ↔ suc ∅ ⊆ 𝑦 ) |
| 107 | 0ex | ⊢ ∅ ∈ V | |
| 108 | sucssel | ⊢ ( ∅ ∈ V → ( suc ∅ ⊆ 𝑦 → ∅ ∈ 𝑦 ) ) | |
| 109 | 107 108 | ax-mp | ⊢ ( suc ∅ ⊆ 𝑦 → ∅ ∈ 𝑦 ) |
| 110 | 106 109 | sylbi | ⊢ ( 1o ⊆ 𝑦 → ∅ ∈ 𝑦 ) |
| 111 | elni2 | ⊢ ( 𝑦 ∈ N ↔ ( 𝑦 ∈ ω ∧ ∅ ∈ 𝑦 ) ) | |
| 112 | 111 6 | sylbir | ⊢ ( ( 𝑦 ∈ ω ∧ ∅ ∈ 𝑦 ) → ( 𝜒 → 𝜃 ) ) |
| 113 | 110 112 | sylan2 | ⊢ ( ( 𝑦 ∈ ω ∧ 1o ⊆ 𝑦 ) → ( 𝜒 → 𝜃 ) ) |
| 114 | 105 113 | syl9r | ⊢ ( ( 𝑦 ∈ ω ∧ 1o ⊆ 𝑦 ) → ( ( ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) → 𝜒 ) → ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → 𝜃 ) ) ) |
| 115 | 114 | adantlr | ⊢ ( ( ( 𝑦 ∈ ω ∧ 1o ∈ ω ) ∧ 1o ⊆ 𝑦 ) → ( ( ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) → 𝜒 ) → ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → 𝜃 ) ) ) |
| 116 | 27 31 82 86 87 115 | findsg | ⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ ω ) ∧ 1o ⊆ 𝐴 ) → ( ( 𝐴 ∈ N ∧ 1o <N 𝐴 ) → 𝜏 ) ) |
| 117 | 23 116 | mpanl2 | ⊢ ( ( 𝐴 ∈ ω ∧ 1o ⊆ 𝐴 ) → ( ( 𝐴 ∈ N ∧ 1o <N 𝐴 ) → 𝜏 ) ) |
| 118 | 13 22 117 | syl2anc | ⊢ ( 𝐴 ∈ N → ( ( 𝐴 ∈ N ∧ 1o <N 𝐴 ) → 𝜏 ) ) |
| 119 | 118 | expd | ⊢ ( 𝐴 ∈ N → ( 𝐴 ∈ N → ( 1o <N 𝐴 → 𝜏 ) ) ) |
| 120 | 119 | pm2.43i | ⊢ ( 𝐴 ∈ N → ( 1o <N 𝐴 → 𝜏 ) ) |
| 121 | nlt1pi | ⊢ ¬ 𝐴 <N 1o | |
| 122 | ltsopi | ⊢ <N Or N | |
| 123 | sotric | ⊢ ( ( <N Or N ∧ ( 𝐴 ∈ N ∧ 1o ∈ N ) ) → ( 𝐴 <N 1o ↔ ¬ ( 𝐴 = 1o ∨ 1o <N 𝐴 ) ) ) | |
| 124 | 122 123 | mpan | ⊢ ( ( 𝐴 ∈ N ∧ 1o ∈ N ) → ( 𝐴 <N 1o ↔ ¬ ( 𝐴 = 1o ∨ 1o <N 𝐴 ) ) ) |
| 125 | 38 124 | mpan2 | ⊢ ( 𝐴 ∈ N → ( 𝐴 <N 1o ↔ ¬ ( 𝐴 = 1o ∨ 1o <N 𝐴 ) ) ) |
| 126 | 121 125 | mtbii | ⊢ ( 𝐴 ∈ N → ¬ ¬ ( 𝐴 = 1o ∨ 1o <N 𝐴 ) ) |
| 127 | 126 | notnotrd | ⊢ ( 𝐴 ∈ N → ( 𝐴 = 1o ∨ 1o <N 𝐴 ) ) |
| 128 | 12 120 127 | mpjaod | ⊢ ( 𝐴 ∈ N → 𝜏 ) |