This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996) (Revised by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | soi.1 | ⊢ 𝑅 Or 𝑆 | |
| soi.2 | ⊢ 𝑅 ⊆ ( 𝑆 × 𝑆 ) | ||
| Assertion | sotri | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soi.1 | ⊢ 𝑅 Or 𝑆 | |
| 2 | soi.2 | ⊢ 𝑅 ⊆ ( 𝑆 × 𝑆 ) | |
| 3 | 2 | brel | ⊢ ( 𝐴 𝑅 𝐵 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 4 | 3 | simpld | ⊢ ( 𝐴 𝑅 𝐵 → 𝐴 ∈ 𝑆 ) |
| 5 | 2 | brel | ⊢ ( 𝐵 𝑅 𝐶 → ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 6 | 4 5 | anim12i | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 7 | sotr | ⊢ ( ( 𝑅 Or 𝑆 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) | |
| 8 | 1 7 | mpan | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) |
| 9 | 8 | 3expb | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) |
| 10 | 6 9 | mpcom | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) |