This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse distributive law. (Contributed by NM, 26-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovdir.1 | ⊢ 𝐴 ∈ V | |
| caovdir.2 | ⊢ 𝐵 ∈ V | ||
| caovdir.3 | ⊢ 𝐶 ∈ V | ||
| caovdir.com | ⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) | ||
| caovdir.distr | ⊢ ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐹 ( 𝑥 𝐺 𝑧 ) ) | ||
| Assertion | caovdir | ⊢ ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdir.1 | ⊢ 𝐴 ∈ V | |
| 2 | caovdir.2 | ⊢ 𝐵 ∈ V | |
| 3 | caovdir.3 | ⊢ 𝐶 ∈ V | |
| 4 | caovdir.com | ⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) | |
| 5 | caovdir.distr | ⊢ ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐹 ( 𝑥 𝐺 𝑧 ) ) | |
| 6 | 3 1 2 5 | caovdi | ⊢ ( 𝐶 𝐺 ( 𝐴 𝐹 𝐵 ) ) = ( ( 𝐶 𝐺 𝐴 ) 𝐹 ( 𝐶 𝐺 𝐵 ) ) |
| 7 | ovex | ⊢ ( 𝐴 𝐹 𝐵 ) ∈ V | |
| 8 | 3 7 4 | caovcom | ⊢ ( 𝐶 𝐺 ( 𝐴 𝐹 𝐵 ) ) = ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) |
| 9 | 3 1 4 | caovcom | ⊢ ( 𝐶 𝐺 𝐴 ) = ( 𝐴 𝐺 𝐶 ) |
| 10 | 3 2 4 | caovcom | ⊢ ( 𝐶 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐶 ) |
| 11 | 9 10 | oveq12i | ⊢ ( ( 𝐶 𝐺 𝐴 ) 𝐹 ( 𝐶 𝐺 𝐵 ) ) = ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐶 ) ) |
| 12 | 6 8 11 | 3eqtr3i | ⊢ ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐶 ) ) |