This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addpipq | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → ( 〈 𝐴 , 𝐵 〉 +pQ 〈 𝐶 , 𝐷 〉 ) = 〈 ( ( 𝐴 ·N 𝐷 ) +N ( 𝐶 ·N 𝐵 ) ) , ( 𝐵 ·N 𝐷 ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ) | |
| 2 | opelxpi | ⊢ ( ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) → 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) | |
| 3 | addpipq2 | ⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) → ( 〈 𝐴 , 𝐵 〉 +pQ 〈 𝐶 , 𝐷 〉 ) = 〈 ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) +N ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ·N ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) , ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) 〉 ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → ( 〈 𝐴 , 𝐵 〉 +pQ 〈 𝐶 , 𝐷 〉 ) = 〈 ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) +N ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ·N ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) , ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) 〉 ) |
| 5 | op1stg | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) | |
| 6 | op2ndg | ⊢ ( ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) | |
| 7 | 5 6 | oveqan12d | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) = ( 𝐴 ·N 𝐷 ) ) |
| 8 | op1stg | ⊢ ( ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) | |
| 9 | op2ndg | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) | |
| 10 | 8 9 | oveqan12rd | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ·N ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( 𝐶 ·N 𝐵 ) ) |
| 11 | 7 10 | oveq12d | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) +N ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ·N ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) = ( ( 𝐴 ·N 𝐷 ) +N ( 𝐶 ·N 𝐵 ) ) ) |
| 12 | 9 6 | oveqan12d | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) = ( 𝐵 ·N 𝐷 ) ) |
| 13 | 11 12 | opeq12d | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → 〈 ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) +N ( ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ·N ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) , ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ·N ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) 〉 = 〈 ( ( 𝐴 ·N 𝐷 ) +N ( 𝐶 ·N 𝐵 ) ) , ( 𝐵 ·N 𝐷 ) 〉 ) |
| 14 | 4 13 | eqtrd | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → ( 〈 𝐴 , 𝐵 〉 +pQ 〈 𝐶 , 𝐷 〉 ) = 〈 ( ( 𝐴 ·N 𝐷 ) +N ( 𝐶 ·N 𝐵 ) ) , ( 𝐵 ·N 𝐷 ) 〉 ) |