This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995) (Revised by Mario Carneiro, 6-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pinq | ⊢ ( 𝐴 ∈ N → 〈 𝐴 , 1o 〉 ∈ Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑥 = 〈 𝐴 , 1o 〉 → ( 𝑥 ~Q 𝑦 ↔ 〈 𝐴 , 1o 〉 ~Q 𝑦 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑥 = 〈 𝐴 , 1o 〉 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) | |
| 3 | 2 | breq2d | ⊢ ( 𝑥 = 〈 𝐴 , 1o 〉 → ( ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ↔ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) ) |
| 4 | 3 | notbid | ⊢ ( 𝑥 = 〈 𝐴 , 1o 〉 → ( ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ↔ ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) ) |
| 5 | 1 4 | imbi12d | ⊢ ( 𝑥 = 〈 𝐴 , 1o 〉 → ( ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ↔ ( 〈 𝐴 , 1o 〉 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) ) ) |
| 6 | 5 | ralbidv | ⊢ ( 𝑥 = 〈 𝐴 , 1o 〉 → ( ∀ 𝑦 ∈ ( N × N ) ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ↔ ∀ 𝑦 ∈ ( N × N ) ( 〈 𝐴 , 1o 〉 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) ) ) |
| 7 | 1pi | ⊢ 1o ∈ N | |
| 8 | opelxpi | ⊢ ( ( 𝐴 ∈ N ∧ 1o ∈ N ) → 〈 𝐴 , 1o 〉 ∈ ( N × N ) ) | |
| 9 | 7 8 | mpan2 | ⊢ ( 𝐴 ∈ N → 〈 𝐴 , 1o 〉 ∈ ( N × N ) ) |
| 10 | nlt1pi | ⊢ ¬ ( 2nd ‘ 𝑦 ) <N 1o | |
| 11 | 1oex | ⊢ 1o ∈ V | |
| 12 | op2ndg | ⊢ ( ( 𝐴 ∈ N ∧ 1o ∈ V ) → ( 2nd ‘ 〈 𝐴 , 1o 〉 ) = 1o ) | |
| 13 | 11 12 | mpan2 | ⊢ ( 𝐴 ∈ N → ( 2nd ‘ 〈 𝐴 , 1o 〉 ) = 1o ) |
| 14 | 13 | breq2d | ⊢ ( 𝐴 ∈ N → ( ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ↔ ( 2nd ‘ 𝑦 ) <N 1o ) ) |
| 15 | 10 14 | mtbiri | ⊢ ( 𝐴 ∈ N → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) |
| 16 | 15 | a1d | ⊢ ( 𝐴 ∈ N → ( 〈 𝐴 , 1o 〉 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) ) |
| 17 | 16 | ralrimivw | ⊢ ( 𝐴 ∈ N → ∀ 𝑦 ∈ ( N × N ) ( 〈 𝐴 , 1o 〉 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) ) |
| 18 | 6 9 17 | elrabd | ⊢ ( 𝐴 ∈ N → 〈 𝐴 , 1o 〉 ∈ { 𝑥 ∈ ( N × N ) ∣ ∀ 𝑦 ∈ ( N × N ) ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) } ) |
| 19 | df-nq | ⊢ Q = { 𝑥 ∈ ( N × N ) ∣ ∀ 𝑦 ∈ ( N × N ) ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) } | |
| 20 | 18 19 | eleqtrrdi | ⊢ ( 𝐴 ∈ N → 〈 𝐴 , 1o 〉 ∈ Q ) |