This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addclpi | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +N 𝐵 ) ∈ N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addpiord | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +N 𝐵 ) = ( 𝐴 +o 𝐵 ) ) | |
| 2 | pinn | ⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) | |
| 3 | pinn | ⊢ ( 𝐵 ∈ N → 𝐵 ∈ ω ) | |
| 4 | nnacl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ N ) → ( 𝐴 +o 𝐵 ) ∈ ω ) |
| 6 | elni2 | ⊢ ( 𝐵 ∈ N ↔ ( 𝐵 ∈ ω ∧ ∅ ∈ 𝐵 ) ) | |
| 7 | nnaordi | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝐵 → ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) ) | |
| 8 | ne0i | ⊢ ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) → ( 𝐴 +o 𝐵 ) ≠ ∅ ) | |
| 9 | 7 8 | syl6 | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝐵 → ( 𝐴 +o 𝐵 ) ≠ ∅ ) ) |
| 10 | 9 | expcom | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( ∅ ∈ 𝐵 → ( 𝐴 +o 𝐵 ) ≠ ∅ ) ) ) |
| 11 | 10 | imp32 | ⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 ∈ ω ∧ ∅ ∈ 𝐵 ) ) → ( 𝐴 +o 𝐵 ) ≠ ∅ ) |
| 12 | 6 11 | sylan2b | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ N ) → ( 𝐴 +o 𝐵 ) ≠ ∅ ) |
| 13 | elni | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ N ↔ ( ( 𝐴 +o 𝐵 ) ∈ ω ∧ ( 𝐴 +o 𝐵 ) ≠ ∅ ) ) | |
| 14 | 5 12 13 | sylanbrc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ N ) → ( 𝐴 +o 𝐵 ) ∈ N ) |
| 15 | 2 14 | sylan | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +o 𝐵 ) ∈ N ) |
| 16 | 1 15 | eqeltrd | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +N 𝐵 ) ∈ N ) |