This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of Gleason p. 121. (Contributed by NM, 25-Feb-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prcdnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ( 𝐶 <Q 𝐵 → 𝐶 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq | ⊢ <Q ⊆ ( Q × Q ) | |
| 2 | relxp | ⊢ Rel ( Q × Q ) | |
| 3 | relss | ⊢ ( <Q ⊆ ( Q × Q ) → ( Rel ( Q × Q ) → Rel <Q ) ) | |
| 4 | 1 2 3 | mp2 | ⊢ Rel <Q |
| 5 | 4 | brrelex1i | ⊢ ( 𝐶 <Q 𝐵 → 𝐶 ∈ V ) |
| 6 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
| 7 | 6 | anbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ) ) |
| 8 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝑦 <Q 𝑥 ↔ 𝑦 <Q 𝐵 ) ) | |
| 9 | 7 8 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 <Q 𝑥 ) ↔ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑦 <Q 𝐵 ) ) ) |
| 10 | 9 | imbi1d | ⊢ ( 𝑥 = 𝐵 → ( ( ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 <Q 𝑥 ) → 𝑦 ∈ 𝐴 ) ↔ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑦 <Q 𝐵 ) → 𝑦 ∈ 𝐴 ) ) ) |
| 11 | breq1 | ⊢ ( 𝑦 = 𝐶 → ( 𝑦 <Q 𝐵 ↔ 𝐶 <Q 𝐵 ) ) | |
| 12 | 11 | anbi2d | ⊢ ( 𝑦 = 𝐶 → ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑦 <Q 𝐵 ) ↔ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 <Q 𝐵 ) ) ) |
| 13 | eleq1 | ⊢ ( 𝑦 = 𝐶 → ( 𝑦 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 14 | 12 13 | imbi12d | ⊢ ( 𝑦 = 𝐶 → ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑦 <Q 𝐵 ) → 𝑦 ∈ 𝐴 ) ↔ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 <Q 𝐵 ) → 𝐶 ∈ 𝐴 ) ) ) |
| 15 | elnpi | ⊢ ( 𝐴 ∈ P ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) | |
| 16 | 15 | simprbi | ⊢ ( 𝐴 ∈ P → ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) |
| 17 | 16 | r19.21bi | ⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) |
| 18 | 17 | simpld | ⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 19 | 18 | 19.21bi | ⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 20 | 19 | imp | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 <Q 𝑥 ) → 𝑦 ∈ 𝐴 ) |
| 21 | 10 14 20 | vtocl2g | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ V ) → ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 <Q 𝐵 ) → 𝐶 ∈ 𝐴 ) ) |
| 22 | 5 21 | sylan2 | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 <Q 𝐵 ) → ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 <Q 𝐵 ) → 𝐶 ∈ 𝐴 ) ) |
| 23 | 22 | adantll | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 <Q 𝐵 ) → ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 <Q 𝐵 ) → 𝐶 ∈ 𝐴 ) ) |
| 24 | 23 | pm2.43i | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 <Q 𝐵 ) → 𝐶 ∈ 𝐴 ) |
| 25 | 24 | ex | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ( 𝐶 <Q 𝐵 → 𝐶 ∈ 𝐴 ) ) |