This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltaddnq | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → 𝐴 <Q ( 𝐴 +Q 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 2 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 +Q 𝑦 ) = ( 𝐴 +Q 𝑦 ) ) | |
| 3 | 1 2 | breq12d | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 <Q ( 𝑥 +Q 𝑦 ) ↔ 𝐴 <Q ( 𝐴 +Q 𝑦 ) ) ) |
| 4 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 +Q 𝑦 ) = ( 𝐴 +Q 𝐵 ) ) | |
| 5 | 4 | breq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 <Q ( 𝐴 +Q 𝑦 ) ↔ 𝐴 <Q ( 𝐴 +Q 𝐵 ) ) ) |
| 6 | 1lt2nq | ⊢ 1Q <Q ( 1Q +Q 1Q ) | |
| 7 | ltmnq | ⊢ ( 𝑦 ∈ Q → ( 1Q <Q ( 1Q +Q 1Q ) ↔ ( 𝑦 ·Q 1Q ) <Q ( 𝑦 ·Q ( 1Q +Q 1Q ) ) ) ) | |
| 8 | 6 7 | mpbii | ⊢ ( 𝑦 ∈ Q → ( 𝑦 ·Q 1Q ) <Q ( 𝑦 ·Q ( 1Q +Q 1Q ) ) ) |
| 9 | mulidnq | ⊢ ( 𝑦 ∈ Q → ( 𝑦 ·Q 1Q ) = 𝑦 ) | |
| 10 | distrnq | ⊢ ( 𝑦 ·Q ( 1Q +Q 1Q ) ) = ( ( 𝑦 ·Q 1Q ) +Q ( 𝑦 ·Q 1Q ) ) | |
| 11 | 9 9 | oveq12d | ⊢ ( 𝑦 ∈ Q → ( ( 𝑦 ·Q 1Q ) +Q ( 𝑦 ·Q 1Q ) ) = ( 𝑦 +Q 𝑦 ) ) |
| 12 | 10 11 | eqtrid | ⊢ ( 𝑦 ∈ Q → ( 𝑦 ·Q ( 1Q +Q 1Q ) ) = ( 𝑦 +Q 𝑦 ) ) |
| 13 | 8 9 12 | 3brtr3d | ⊢ ( 𝑦 ∈ Q → 𝑦 <Q ( 𝑦 +Q 𝑦 ) ) |
| 14 | ltanq | ⊢ ( 𝑥 ∈ Q → ( 𝑦 <Q ( 𝑦 +Q 𝑦 ) ↔ ( 𝑥 +Q 𝑦 ) <Q ( 𝑥 +Q ( 𝑦 +Q 𝑦 ) ) ) ) | |
| 15 | 13 14 | imbitrid | ⊢ ( 𝑥 ∈ Q → ( 𝑦 ∈ Q → ( 𝑥 +Q 𝑦 ) <Q ( 𝑥 +Q ( 𝑦 +Q 𝑦 ) ) ) ) |
| 16 | 15 | imp | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 +Q 𝑦 ) <Q ( 𝑥 +Q ( 𝑦 +Q 𝑦 ) ) ) |
| 17 | addcomnq | ⊢ ( 𝑥 +Q 𝑦 ) = ( 𝑦 +Q 𝑥 ) | |
| 18 | vex | ⊢ 𝑥 ∈ V | |
| 19 | vex | ⊢ 𝑦 ∈ V | |
| 20 | addcomnq | ⊢ ( 𝑟 +Q 𝑠 ) = ( 𝑠 +Q 𝑟 ) | |
| 21 | addassnq | ⊢ ( ( 𝑟 +Q 𝑠 ) +Q 𝑡 ) = ( 𝑟 +Q ( 𝑠 +Q 𝑡 ) ) | |
| 22 | 18 19 19 20 21 | caov12 | ⊢ ( 𝑥 +Q ( 𝑦 +Q 𝑦 ) ) = ( 𝑦 +Q ( 𝑥 +Q 𝑦 ) ) |
| 23 | 16 17 22 | 3brtr3g | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑦 +Q 𝑥 ) <Q ( 𝑦 +Q ( 𝑥 +Q 𝑦 ) ) ) |
| 24 | ltanq | ⊢ ( 𝑦 ∈ Q → ( 𝑥 <Q ( 𝑥 +Q 𝑦 ) ↔ ( 𝑦 +Q 𝑥 ) <Q ( 𝑦 +Q ( 𝑥 +Q 𝑦 ) ) ) ) | |
| 25 | 24 | adantl | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 <Q ( 𝑥 +Q 𝑦 ) ↔ ( 𝑦 +Q 𝑥 ) <Q ( 𝑦 +Q ( 𝑥 +Q 𝑦 ) ) ) ) |
| 26 | 23 25 | mpbird | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → 𝑥 <Q ( 𝑥 +Q 𝑦 ) ) |
| 27 | 3 5 26 | vtocl2ga | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → 𝐴 <Q ( 𝐴 +Q 𝐵 ) ) |